On the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} involving quartic polynomials

被引:0
作者
Yong Zhang
Arman Shamsi Zargar
机构
[1] Changsha University of Science and Technology,School of Mathematics and Statistics, Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering
[2] Independent Researcher,undefined
关键词
Diophantine equation; Quartic polynomial; Rational solution; Elliptic curve; Primary 11D72; 11D25; Secondary 11D41; 11G05;
D O I
10.1007/s10998-018-0259-7
中图分类号
学科分类号
摘要
By the theory of elliptic curves, we prove that the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} have infinitely many rational solutions for some quartic polynomials, which gives a positive answer to Question 4.3 of Ulas and Togbé (Publ Math Debrecen 76(1–2):183–201, 2010) for quartic polynomials.
引用
收藏
页码:25 / 31
页数:6
相关论文
共 10 条
[1]  
Bosma W(1997)The Magma algebra system. I. The user language J. Symb. Comput. 24 235-265
[2]  
Cannon J(2010)On the Diophantine equation Bull. Aust. Math. Soc. 82 187-204
[3]  
Playoust C(2017), II J. Number Theory 174 239-257
[4]  
He B(2010)On certain Diophantine equations of the form Publ. Math. Debrecen 76 183-201
[5]  
Togbé A(undefined)On the Diophantine equation undefined undefined undefined-undefined
[6]  
Ulas M(undefined)undefined undefined undefined undefined-undefined
[7]  
Tengely Sz(undefined)undefined undefined undefined undefined-undefined
[8]  
Ulas M(undefined)undefined undefined undefined undefined-undefined
[9]  
Ulas M(undefined)undefined undefined undefined undefined-undefined
[10]  
Togbé A(undefined)undefined undefined undefined undefined-undefined