Formulas of Szegő Type for the Periodic Schrödinger Operator

被引:0
|
作者
Bernhard Pfirsch
Alexander V. Sobolev
机构
[1] University College London,Department of Mathematics
来源
Communications in Mathematical Physics | 2018年 / 358卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove asymptotic formulas of Szegő type for the periodic Schrödinger operator H=-d2dx2+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H = -\frac{d^2}{dx^2}+V}$$\end{document} in dimension one. Admitting fairly general functions h with h(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h(0)=0}$$\end{document}, we study the trace of the operator h(χ(-α,α)χ(-∞,μ)(H)χ(-α,α))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${h(\chi_{(-\alpha,\alpha)} \chi_{(-\infty,\mu)}(H)\chi_{(-\alpha,\alpha)})}$$\end{document} and link its subleading behaviour as α→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha \to \infty}$$\end{document} to the position of the spectral parameter μ relative to the spectrum of H.
引用
收藏
页码:675 / 704
页数:29
相关论文
共 50 条