Uniformly fuzzy model of linear regression

被引:0
作者
I. V. Ponomarev
V. V. Slavsky
机构
[1] Altai State Pedagogic Academy, Barnaul 656031, 55, ul. Molodezhnaya
基金
俄罗斯基础研究基金会;
关键词
Membership Function; Convex Hull; Fuzzy Number; Fuzzy Model; Fuzzy Regression;
D O I
10.1007/s10958-012-1002-1
中图分类号
学科分类号
摘要
We study fuzzy and standard models of simple linear regression. We give a geometric interpretation of a fuzzy model and compare with the standard linear regression model. We also study the computational complexity of the linear regression fuzzy model, indicate effective algorithms of complexity of orders O(n log n), O(n 2), and describe their realization by MatLab. Bibliography: 10 titles. Illustration: 7 figures. © 2012 Springer Science+Business Media New York.
引用
收藏
页码:478 / 494
页数:16
相关论文
共 10 条
  • [1] Tanaka H., Uejima S., Asai K., Linear regression analysis with fuzzy model, IEEE Trans. Syst. Man Cybern., 12, 6, pp. 903-907, (1982)
  • [2] Shapiro A.F., Fuzzy Regression and the Term Structure of Interest Rates Revisited, Proc. the 14th Int. AFIR Colloquium, 1, pp. 29-45, (2004)
  • [3] Hong D.H., Hwang C., Support vector fuzzy regression machines, Fuzzy Sets Syst., 138, 2, pp. 271-281, (2003)
  • [4] Song K.B., Baek Y.S., Hong D.H., Jang G., Short-term load forecasting for the holidays using fuzzy linear regression method, IEEE Trans. Power Syst., 20, 1, pp. 96-101, (2005)
  • [5] Lu J., Wang R., An enhanced fuzzy linear regression model with more flexible spreads, Fuzzy Sets Syst., 160, 17, pp. 2505-2523, (2009)
  • [6] Leichtweiss K., Convex Sets [in Russian], (1985)
  • [7] Hadwiger H., Debrunner H., Combinatorial Geometry in the Plane, (1964)
  • [8] Gmurman V.E., Probability Theory and Mathematical Statistics [in Russian], (1972)
  • [9] Preparata F.P., Shamos M.I., Computational Geometry. An Introduction, (1989)
  • [10] Barber C.B., Dobkin D.P., Huhdanpaa H.T., The quickhull algorithm for convex hulls, ACM Trans. Math. Soft., 22, 4, pp. 469-483, (1996)