A singular boundary value problem for nonlinear differential equations of fractional order

被引:55
作者
Kosmatov N. [1 ]
机构
[1] Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock
关键词
A priori estimate; Carathéodory conditions; Leray-Schauder Continuation Principle; Riemann-Liouville derivative;
D O I
10.1007/s12190-008-0104-x
中图分类号
学科分类号
摘要
We are concerned with the nonlinear differential equation of fractional order Dα0+u(t)=f(t,u(t),u'(t)), a.,e. t ∈ (0,1), where Dα0+ is the Riemann-Liouville fractional order derivative, subject to the boundary conditions u(0)=u(1)=0. We obtain the existence of at least one solution using the Leray-Schauder Continuation Principle.
引用
收藏
页码:125 / 135
页数:10
相关论文
共 22 条
[1]  
Bai C.Z., Fang J.X., The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations, Appl. Math. Comput., 150, pp. 611-621, (2004)
[2]  
Bai Z., Lu H., Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311, pp. 495-505, (2005)
[3]  
Benchohra M., Henderson J., Ntoyuas S.K., Quahab A., Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338, pp. 1340-1350, (2008)
[4]  
Daftardar-Gejji V., Positive solutions of a system of non-autonomous fractional differential equations, J. Math. Anal. Appl., 302, pp. 56-64, (2005)
[5]  
Delbosco D., Rodino L., Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204, pp. 609-625, (1996)
[6]  
El-Sayed W.G., El-Sayed A.M.A., On the functional integral equations of mixed type and integro-differential equations of fractional orders, Appl. Math. Comput., 154, pp. 461-467, (2004)
[7]  
Garcia-Huidobro M., Gupta C.P., Manasevich R., A Dirichlet-Neumann m-point BVP with a p-Laplacian-like operator, Nonlinear Anal., 62, 6, pp. 1067-1089, (2005)
[8]  
Gupta C.P., A non-resonant multi-point boundary value problem of Neumann-Dirichlet type for a p-Laplacian type operator, Dyn. Syst. Appl., 4, pp. 439-442, (2004)
[9]  
Gupta C.P., Trofimchuk S., A priori estimates for the existence of a solution for a multi-point boundary value problem, J. Inequal. Appl., 5, 4, pp. 351-365, (2000)
[10]  
Jaradat O.K., Al-Omari A., Momani S., Existence of the mild solution for fractional semilinear initial value problems, Nonlinear Anal., (2007)