Singular Vectors of the N = 1 Superconformal Algebra

被引:0
作者
Kenji Iohara
Yoshiyuki Koga
机构
[1] Department of Mathematics,
[2] Faculty of Science,undefined
[3] Kobe University,undefined
[4] Kobe 657-8501,undefined
[5] Japan,undefined
[6] ¶ e-mail: iohara@math.kobe-u.ac.jp,undefined
[7] Department of Mathematics,undefined
[8] Faculty of Science and Technology,undefined
[9] Sophia University,undefined
[10] Tokyo 102-8554,undefined
[11] Japan,undefined
[12] e-mail: koga@mm.sophia.ac.jp,undefined
来源
Annales Henri Poincaré | 2002年 / 3卷
关键词
Singular Vector; Superconformal Algebra; Vector Formula;
D O I
暂无
中图分类号
学科分类号
摘要
We give two singular vector formulae of the N = 1 superconformal algebra.
引用
收藏
页码:19 / 27
页数:8
相关论文
共 50 条
[31]   A construction of N=2 and centerless N=4 superconformal fields via affine superalgebras [J].
Wakimoto, M .
NUCLEAR PHYSICS B, 1998, 530 (03) :665-682
[32]   Fusion rules for the logarithmic N=1 superconformal minimal models: I. The Neveu-Schwarz sector [J].
Canagasabey, Michael ;
Rasmussen, Jorgen ;
Ridout, David .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (41)
[33]   Differential-Operator Representations of Sn and Singular Vectors in Verma Modules [J].
Xiaoping Xu .
Algebras and Representation Theory, 2012, 15 :211-231
[34]   Differential-Operator Representations of Sn and Singular Vectors in Verma Modules [J].
Xu, Xiaoping .
ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (02) :211-231
[35]   Tensor Approximation Approach to Calculation of Singular Values and Vectors for SVD Problem [J].
Mert C. ;
Milnikov A. ;
Prangishvili A. .
Journal of Mathematical Sciences, 2013, 195 (4) :512-517
[36]   Nonlinear realization of N=2 superconformal symmetry and brane effective actions [J].
Lu-Xin Liu .
The European Physical Journal C, 2009, 62 :615-623
[37]   Local and 2-local automorphisms on the N=2 superconformal algebras [J].
Chen, Yulu ;
Wang, Bin ;
Zhao, Kaiming .
COMMUNICATIONS IN ALGEBRA, 2025,
[38]   N=4 superconformal quantum mechanics in one dimension and its algebraic structure [J].
Ruan, D ;
Guo, H ;
Sun, HZ .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (01) :11-14
[39]   Differential-operator representations of Weyl group and singular vectors in Verma modules [J].
Wei Xiao .
Science China Mathematics, 2018, 61 :1013-1038
[40]   Differential-operator representations of Weyl group and singular vectors in Verma modules [J].
Xiao, Wei .
SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) :1013-1038