Fredholm and regularity theory of Douglis–Nirenberg elliptic systems on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{N}}$$\end{document}

被引:0
作者
Patrick J. Rabier
机构
[1] University of Pittsburgh,Department of Mathematics
关键词
Elliptic system; Fredholm operator; Index; Sobolev spaces; Regularity; 35J45; 47A53; 46J05;
D O I
10.1007/s00209-010-0802-6
中图分类号
学科分类号
摘要
We give a fairly complete exposition of the Fredholm properties of the Douglis–Nirenberg elliptic systems on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^{N}}$$\end{document} in the classical (unweighted) Lp Sobolev spaces and under “minimal” assumptions about the coefficients. These assumptions rule out the use of classical pseudodifferential operator theory, although it is indirectly of assistance in places. After generalizing a necessary and sufficient condition for Fredholmness, already known in special cases, various invariance properties are established (index, null space, etc.), with respect to p and the Douglis–Nirenberg numbers. Among other things, this requires getting around the problem that the Lp spaces are not ordered by inclusion. In turn, with some work, invariance leads to a regularity theory more general than what can be obtained by the method of differential quotients.
引用
收藏
页码:369 / 393
页数:24
相关论文
共 39 条
[1]  
Benkirane N.(2000)Régularité globale et estimation a priori pour des opérateurs elliptiques sur des espaces de Sobolev á poids Bull. Belg. Math. Soc. Simon Stevin 7 615-622
[2]  
Bott R.(1978)Some remarks on the paper of Callias: Axial anomalies and index theorems on open spaces Comm. Math. Phys. 62 213-234
[3]  
Seeley R.(1964)On Banach algebras with J. Math. Mech. 13 313-323
[4]  
Breuer M.(1955)-symbol Comm. Pure Appl. Math. 8 503-538
[5]  
Cordes H.O.(1974)Interior estimates for elliptic systems of partial differential equations Math. J. 24 897-902
[6]  
Douglis A.(1981)Spaces of functions with asymptotic conditions on $${\mathbb{R}^{n},}$$ Indiana Univ Acta Math. 146 129-150
[7]  
Nirenberg L.(1965)Elliptic systems in J. Math. Mech. 14 1007-1032
[8]  
Cantor M.(1972) spaces on manifolds which are Euclidean at infinity Appl. Anal. 2 115-129
[9]  
Choquet-Bruhat Y.(1975)The algebra of singular integral operators in J. Funct. Anal. 18 115-131
[10]  
Christodoulou D.(1968)Beispiele von Pseudo-Differentialoperator-Algebren Amer. J. Math. 90 681-717