Weingarten surfaces and sine-Gordon equation

被引:0
作者
Weihuan Chen
Haizhong Li
机构
[1] Peking University,Department of Mathematics
[2] Tsinghua University,Department of Applied Mathematics
来源
Science in China Series A: Mathematics | 1997年 / 40卷
关键词
Weingarten surface; Darboux line congruence; sine-Gordon equation; Bäcklund transformation;
D O I
暂无
中图分类号
学科分类号
摘要
A relation between Weingarten surfaces with conditionK - 2mH +m2 +l2 = 0 and solutions of sine-Gordon equations is established.
引用
收藏
页码:1028 / 1035
页数:7
相关论文
共 50 条
[21]   Solitary waves of a perturbed sine-Gordon equation [J].
Hua, CC ;
Liu, YZ .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (01) :21-26
[22]   Nonlocal topological solitons of the sine-Gordon equation [J].
Tang, Xiao-yan ;
Liang, Zu-feng ;
Wang, Jian-yong .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (28)
[23]   Negaton and complexiton solutions of sine-Gordon equation [J].
Wu, Hongxia ;
Fan, Tianyou .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :471-482
[24]   Breather dynamics in the perturbed sine-Gordon equation [J].
Tu, T ;
Cheng, G .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 40 (04) :390-392
[25]   Soliton asymptotics of solutions of the sine-gordon equation [J].
Kirsch W. .
Mathematical Physics, Analysis and Geometry, 1999, 2 (1) :25-51
[26]   Boundary Energy Control of the Sine-Gordon Equation [J].
Dolgopolik, Maksim ;
Fradkov, Alexander L. ;
Andrievsky, Boris .
IFAC PAPERSONLINE, 2016, 49 (14) :148-153
[27]   Solutions of the three-dimensional sine-Gordon equation [J].
Aero, E. L. ;
Bulygin, A. N. ;
Pavlov, Yu. V. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 158 (03) :313-319
[28]   π-Kinks in the parametrically driven sine-Gordon equation and applications [J].
Mitkov, I ;
Zharnitsky, V .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 123 (1-4) :301-307
[29]   Feedback control for some solutions of the sine-Gordon equation [J].
Porubov, A. V. ;
Fradkov, A. L. ;
Andrievsky, B. R. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 269 :17-22
[30]   Stability of the solitary manifold of the perturbed sine-Gordon equation [J].
Mashkin, Timur .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)