A Semi-Automated Statistical Algorithm for Object Separation

被引:0
|
作者
Madhur Srivastava
Satish K. Singh
Prasanta K. Panigrahi
机构
[1] Cornell University,Department of Biological and Environmental Engineering
[2] Jaypee University of Engineering and Technology,Department of Physical Sciences
[3] Indian Institute of Science Education and Research,undefined
关键词
Gaussian distribution; Thresholding; Impulse function; Segmentation; Object separation;
D O I
暂无
中图分类号
学科分类号
摘要
We explicate a semi-automated statistical algorithm for object identification and segregation in both gray scale and color images. The algorithm makes optimal use of the observation that definite objects in an image are typically represented by pixel values having narrow Gaussian distributions about characteristic mean values. Furthermore, for visually distinct objects, the corresponding Gaussian distributions have negligible overlap with each other, and hence the Mahalanobis distance between these distributions is large. These statistical facts enable one to subdivide images into multiple thresholds of variable sizes, each segregating similar objects. The procedure incorporates the sensitivity of the human eye to the gray pixel values into the variable threshold size, while mapping the Gaussian distributions into localized δ-functions, for object separation. The effectiveness of this recursive statistical algorithm is demonstrated using a wide variety of images.
引用
收藏
页码:3059 / 3078
页数:19
相关论文
共 50 条
  • [21] SEMI-AUTOMATED PROXIMATE ANALYSIS
    SCHUSTER, JH
    CEREAL FOODS WORLD, 1978, 23 (04) : 180 - &
  • [23] Assessment of a Novel Semi-Automated Algorithm for the Quantification of the Parafoveal Capillary Network
    Kapsala, Zoi
    Pallikaris, Aristofanis
    Tsilimbaris, Miltiadis K.
    CLINICAL OPHTHALMOLOGY, 2023, 17 : 1661 - 1674
  • [24] Semi-automated Phalanx Bone Segmentation Using the Expectation Maximization Algorithm
    Austin J. Ramme
    Nicole DeVries
    Nicole A. Kallemyn
    Vincent A. Magnotta
    Nicole M. Grosland
    Journal of Digital Imaging, 2009, 22 : 483 - 491
  • [25] Semi-automated Phalanx Bone Segmentation Using the Expectation Maximization Algorithm
    Ramme, Austin J.
    DeVries, Nicole
    Kallemyn, Nicole A.
    Magnotta, Vincent A.
    Grosland, Nicole M.
    JOURNAL OF DIGITAL IMAGING, 2009, 22 (05) : 483 - 491
  • [26] Validation of an Algorithm for Semi-automated Estimation of Voice Relative Fundamental Frequency
    Lien, Yu-An S.
    Murray, Elizabeth S. Heller
    Calabrese, Carolyn R.
    Michener, Carolyn M.
    Van Stan, Jarrad H.
    Mehta, Daryush D.
    Hillman, Robert E.
    Noordzij, J. Pieter
    Stepp, Cara E.
    ANNALS OF OTOLOGY RHINOLOGY AND LARYNGOLOGY, 2017, 126 (10): : 712 - 716
  • [27] DEVELOPMENT OF AN SEMI-AUTOMATED SYSTEM WITH A MAGNETIC NANOPARTICLES SEPARATION DEVICE FOR SNPS DETECTION
    Li Song
    Liu Lishang
    Liu Hongna
    Tian Lan
    Li Zhiyang
    He Nongyue
    IFPT'6: PROGRESS ON POST-GENOME TECHNOLOGIES, PROCEEDINGS, 2009, : 118 - +
  • [28] Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping
    Anders, Niels S.
    Seijmonsbergen, Arie C.
    Bouten, Willem
    REMOTE SENSING OF ENVIRONMENT, 2011, 115 (12) : 2976 - 2985
  • [29] A semi-automated algorithm for hypothalamus volumetry in 3 Tesla magnetic resonance images
    Wolff, Julia
    Schindler, Stephanie
    Lucas, Christian
    Binninger, Anne-Sophie
    Weinrich, Luise
    Schreiber, Jan
    Hegerl, Ulrich
    Moeller, Harald E.
    Leitzke, Marco
    Geyer, Stefan
    Schoenknecht, Peter
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2018, 277 : 45 - 51
  • [30] A Novel 4D Semi-Automated Algorithm for Volumetric Segmentation in Echocardiography
    Krishnaswamy, Deepa
    Hareendranathan, Abhilash Rakkunedeth
    Suwatanaviroj, Tan
    Boulanger, Pierre
    Becher, Harald
    Noga, Michelle
    Punithakumar, Kumaradevan
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 1119 - 1122