On Möbius Duality and Coarse-Graining

被引:0
作者
Thierry Huillet
Servet Martínez
机构
[1] CNRS-UMR 8089 et Université de Cergy-Pontoise,Laboratoire de Physique Théorique et Modelisation
[2] Universided de Chile,Departamento de Ingeniería Matemático, Centro Modelamiento Matemático, UMI 2807, UCHILE
来源
Journal of Theoretical Probability | 2016年 / 29卷
关键词
Duality; Möbius matrices; Coarse-graining; Partitions; Sylvester formula; Coalescence; 05A18; 60J10; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
We study duality relations for zeta and Möbius matrices and monotone conditions on the kernels. We focus on the cases of families of sets and partitions. The conditions for positivity of the dual kernels are stated in terms of the positive Möbius cone of functions, which is described in terms of Sylvester formulae. We study duality under coarse-graining and show that an h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-transform is needed to preserve stochasticity. We give conditions in order that zeta and Möbius matrices admit coarse-graining, and we prove they are satisfied for sets and partitions. This is a source of relevant examples in genetics on the haploid and multi-allelic Cannings models.
引用
收藏
页码:143 / 179
页数:36
相关论文
共 50 条
  • [1] On Mobius Duality and Coarse-Graining
    Huillet, Thierry
    Martinez, Servet
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (01) : 143 - 179
  • [2] Predictive coarse-graining
    Schoeberl, Markus
    Zabaras, Nicholas
    Koutsourelakis, Phaedon-Stelios
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 333 : 49 - 77
  • [3] On the coarse-graining of grains
    Goldhirsch, I.
    IUTAM-ISIMM SYMPOSIUM ON MATHEMATICAL MODELING AND PHYSICAL INSTANCES OF GRANULAR FLOWS, 2010, 1227 : 198 - 207
  • [4] Rigorous Progress in Coarse-Graining
    Noid, W. G.
    Szukalo, Ryan J.
    Kidder, Katherine M.
    Lesniewski, Maria C.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2024, 75 : 21 - 45
  • [5] Coarse-Graining and the Blackwell Order
    Rauh, Johannes
    Banerjee, Pradeep Kr.
    Olbrich, Eckehard
    Jost, Juergen
    Bertschinger, Nils
    Wolpert, David
    ENTROPY, 2017, 19 (10):
  • [6] Coarse-Graining Methods for Computational Biology
    Saunders, Marissa G.
    Voth, Gregory A.
    ANNUAL REVIEW OF BIOPHYSICS, VOL 42, 2013, 42 : 73 - 93
  • [7] Covariant fuzzy observables and coarse-graining
    Heinonen, T
    Lahti, P
    Ylinen, K
    REPORTS ON MATHEMATICAL PHYSICS, 2004, 53 (03) : 425 - 441
  • [8] Assessment of atomistic coarse-graining methods
    Chen, Youping
    Zimmerman, Jonathan
    Krivtsov, Anton
    McDowell, David L.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2011, 49 (12) : 1337 - 1349
  • [9] COARSE-GRAINING OPEN MARKOV PROCESSES
    Baez, John C.
    Courser, Kenny
    THEORY AND APPLICATIONS OF CATEGORIES, 2018, 33 : 1223 - 1268
  • [10] QUANTITATIVE COARSE-GRAINING OF MARKOV CHAINS
    Hilder, Bastian
    Sharma, Upanshu
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 913 - 954