On Möbius Duality and Coarse-Graining

被引:0
作者
Thierry Huillet
Servet Martínez
机构
[1] CNRS-UMR 8089 et Université de Cergy-Pontoise,Laboratoire de Physique Théorique et Modelisation
[2] Universided de Chile,Departamento de Ingeniería Matemático, Centro Modelamiento Matemático, UMI 2807, UCHILE
来源
Journal of Theoretical Probability | 2016年 / 29卷
关键词
Duality; Möbius matrices; Coarse-graining; Partitions; Sylvester formula; Coalescence; 05A18; 60J10; 92D25;
D O I
暂无
中图分类号
学科分类号
摘要
We study duality relations for zeta and Möbius matrices and monotone conditions on the kernels. We focus on the cases of families of sets and partitions. The conditions for positivity of the dual kernels are stated in terms of the positive Möbius cone of functions, which is described in terms of Sylvester formulae. We study duality under coarse-graining and show that an h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-transform is needed to preserve stochasticity. We give conditions in order that zeta and Möbius matrices admit coarse-graining, and we prove they are satisfied for sets and partitions. This is a source of relevant examples in genetics on the haploid and multi-allelic Cannings models.
引用
收藏
页码:143 / 179
页数:36
相关论文
共 22 条
[1]  
Aldous D(1987)Strong uniform times and finite random walks Adv. Appl. Math. 8 69-97
[2]  
Diaconis P(1975)On the applications of Möbius inversion in combinatorial analysis Am. Math. Mon. 82 789-803
[3]  
Bender E(1974)The latent roots of certain Markov chains arising in genetics: a new approach, I. Haploid models. Adv. Appl. Probab. 6 260-290
[4]  
Goldman J(1975)The latent roots of certain Markov chains arising in genetics: a new approach, II. Further haploid models Adv. Appl. Probab. 7 264-282
[5]  
Cannings C(1990)Strong stationary times via a new form of duality Ann. Probab. 18 1483-1522
[6]  
Cannings C(1978)The characteristic values and vectors for a class of stochastic matrices arising in genetics SIAM J. Appl. Math. 34 630-642
[7]  
Diaconis P(2011)Duality and intertwining for discrete Markov kernels: relations and examples Adv. Appl. Probab. 43 437-446
[8]  
Fill JA(1957)Some problems of stochastic processes in genetics Ann. Math. Statist. 28 882-901
[9]  
Gladstien K(2012)Strong stationary duality for Möbius monotone Markov chains Queueing Syst. 71 79-95
[10]  
Huillet T(1999)The concept of duality and applications to Markov processes arising in neutral population genetics models Bernoulli 5 761-777