Generalized derivations on Lie ideals in semiprime rings

被引:0
作者
Aboubakr A. [1 ,2 ]
González S. [2 ]
机构
[1] Department of Mathematics, University of Fayoum, Faiyum
[2] Departamento de Matemáticas, Universidad de Oviedo, Oviedo
来源
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry | 2016年 / 57卷 / 4期
关键词
Derivation; Generalized derivation; Lie ideal; Semiprime ring;
D O I
10.1007/s13366-016-0297-3
中图分类号
学科分类号
摘要
Herstein (J Algebra 14:561–571, 1970) proved that given a semiprime 2-torsion free ring R and an inner derivation dt, if dt2(U)=0 for a Lie ideal U of R then dt(U) = 0. Carini (Rend Circ Mat Palermo 34:122–126, 1985) extended this result for an arbitrary derivation d, proving that d2(U) = 0 implies d(U) ⊆ Z(R). The aim of this paper is to extend the results mentioned above for right (resp. left) generalized derivations. Precisely, we prove that if R admits a right generalized derivation F associated with a derivation d such that F2(U) = (0) , then d3(U) = (0) and (d2(U))2=(0). Furthermore, if F is also a left generalized derivation on U, then d(U) = F(U) = (0) , and d(R) , F(R) ⊆ CR(U). On the other hand, if (F, d), (G, g) are, respectively, right and left generalized derivations that satisfy F(u) v= uG(v) for all u, v∈ U, then d(U) , g(U) ⊆ CR(U). © 2016, The Managing Editors.
引用
收藏
页码:841 / 850
页数:9
相关论文
共 16 条
  • [1] Ali A., Shujat F., Remarks on semiprime rings with generalized derivations, Int. Math. Forum, 7, 26, pp. 1295-1302, (2012)
  • [2] Bergen J., Herstein I.N., Kerr J.W., Lie ideals and derivations of prime rings, J. Algebra, 71, pp. 259-267, (1981)
  • [3] Beidar K.I., Martindale W.S.I.I.I., Mikhalev A.V., Rings with generalized identities. Monographs and textbooks in pure and applied mathematics, vol. 196, p. xiv+522, (1996)
  • [4] Bresar M., On the distance of the composition of two derivations to the generalized derivations, Glasg. Math. J., 33, pp. 89-93, (1991)
  • [5] Carini L., Derivations on Lie ideals in semiprime rings, Rend. Circ. Mat. Palermo, 34, pp. 122-126, (1985)
  • [6] Dalgin H., Lie ideals and generalized derivations of prime rings, Int. J. Math., 4, 10, pp. 461-467, (2010)
  • [7] Golbasi O., Kaya K., On Lie ideals with generalized derivations, Sib. Math. J., 47, 5, pp. 862-866, (2006)
  • [8] Golbasi O., Koc E., Generalized derivations on Lie ideals in prime rings, Turk. J. Math., 35, pp. 23-28, (2011)
  • [9] Herstein I.N., On the Lie structure of an associative ring, J. Algebra, 14, pp. 561-571, (1970)
  • [10] Herstein I.N., Rings with Involution, Chicago Lectures in Mathematics, (1976)