We establish the unilateral global bifurcation result for the following nonlinear operator equation u=L(λ)u+H(λ,u),(λ,u)∈Rm×X\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$u = L\left( \lambda \right)u + H\left( {\lambda,u} \right),\,\left( {\lambda,u} \right) \in \mathbb{R}{^m} \times X$$\end{document} where m is a positive integer, X is a Banach space, L(·) is a positively homogeneous completely continuous operator and H: ℝm·X → X is completely continuous with H = o (||u||) near u = 0 uniformly on bounded λ sets.