H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} Filtering for Markov Jump Neural Networks Subject to Hidden-Markov Mode Observation and Packet Dropouts via an Improved Activation Function Dividing Method

被引:0
作者
Feng Li
Jianrong Zhao
Shuai Song
Xia Huang
Hao Shen
机构
[1] Nanjing University of Science and Technology,School of Automation
[2] Shandong University of Science and Technology,College of Electrical Engineering and Automation
[3] Anhui University of Technology,School of Electrical and Information Engineering
[4] Linyi University,School of Automation and Electrical Engineering
关键词
Activation function dividing method; Hidden Markov model (HMM); Markov jump neural networks; filtering;
D O I
10.1007/s11063-019-10175-w
中图分类号
学科分类号
摘要
This paper is devoted to investigating the H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} filtering problem for Markov jump neural networks with hidden-Markov mode observation and packet dropouts, in which the information regarding to the Markov state can not be completely acquired. To address this circumstance, a hidden Markov model (HMM)-based technique is established. That is employing a detector to detect the information of the Markov state and then giving an estimated signal of the Markov state for the filter design. Some H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance analysis criteria for filtering error systems and the corresponding HMM-based filter design procedure are given. An improved activation function dividing method (AFDM) is presented for neural networks to reduce the conservatism of the obtained results. The superiority of the improved AFDM and the validity of obtained results are verified by an illustrative example.
引用
收藏
页码:1939 / 1955
页数:16
相关论文
共 189 条
[21]  
Yang Z(2016)Distributed dissipative state estimation for Markov jump genetic regulatory networks subject to round-robin scheduling IEEE Trans Neural Netw Learn Syst 45 2840-2852
[22]  
Hu J(2018)Extended dissipative state estimation for uncertain discrete-time markov jump neural networks with mixed time delays Int J Mach Learn Cyber 10 2175-2185
[23]  
Wang Z(2015)Mixed H-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays Appl Math Comput 47 1219-1234
[24]  
Alsaadi FE(2016)Robust J Frankl Inst 62 2020-2025
[25]  
Hayat T(2019) filtering for uncertain discrete-time stochastic neural networks with Markovian jump and mixed time-delays J Frankl Inst 48 2426-2436
[26]  
Shen H(2014)Non-fragile finite-time Automatica 93 33-41
[27]  
Men Y(2015)- IEEE Trans Cybern 1 13-23
[28]  
Cao J(2016) state estimation for discrete-time Markov jump neural networks with unreliable communication links IET Control Theory Appl 49 1749-1758
[29]  
Park J(2015)State estimation of neural networks with two Markovian jumping parameters and multiple time delays IEEE Trans Autom Control 27 1952-1962
[30]  
Qi W(2017)Event-triggered dissipative state estimation for Markov jump neural networks with random uncertainties IEEE Trans Autom Control 354 6747-6765