Hydraulic Fracture Propagation Through an Orthogonal Discontinuity: A Laboratory, Analytical and Numerical Study

被引:0
|
作者
Ella María Llanos
Robert G. Jeffrey
Richard Hillis
Xi Zhang
机构
[1] The University of Adelaide,
[2] Strata Control Technology (SCT),undefined
[3] Deep Exploration Technologies CRC (DET-CRC),undefined
[4] Commonwealth Scientific and Industrial Research Organization (CSIRO),undefined
来源
Rock Mechanics and Rock Engineering | 2017年 / 50卷
关键词
Hydraulic fracturing; Numerical modelling; Laboratory experiments; Naturally fractured reservoirs;
D O I
暂无
中图分类号
学科分类号
摘要
Rocks are naturally fractured, and lack of knowledge of hydraulic fracture growth through the pre-existing discontinuities in rocks has impeded enhancing hydrocarbon extraction. This paper presents experimental results from uniaxial and biaxial tests, combined with numerical and analytical modelling results to develop a criterion for predicting whether a hydraulic fracture will cross a discontinuity, represented at the laboratory by unbonded machined frictional interfaces. The experimental results provide the first evidence for the impact of viscous fluid flow on the orthogonal fracture crossing. The fracture elliptical footprint also reflects the importance of both the applied loading stress and the viscosity in fracture propagation. The hydraulic fractures extend both in the direction of maximum compressive stress and in the direction with discontinuities that are arranged to be normal to the maximum compressive stress. The modelling results of fracture growth across discontinuities are obtained for the locations of slip starting points in initiating fracture crossing. Our analysis, in contrast to previous work on the prediction of frictional crossing, includes the non-singular stresses generated by the finite pressurised hydraulic fracture. Experimental and theoretical outcomes herein suggest that hydraulic fracture growth through an orthogonal discontinuity does not depend primarily on the interface friction coefficient.
引用
收藏
页码:2101 / 2118
页数:17
相关论文
共 50 条
  • [41] Numerical Investigation of Hydraulic Fracture Propagation Morphology in the Conglomerate Reservoir
    Xu, Zehao
    Liu, Xiangjun
    Liang, Lixi
    GEOFLUIDS, 2022, 2022
  • [42] Numerical Simulation of the Influence of Natural Fractures on Hydraulic Fracture Propagation
    Song Yaobin
    Lu Weiyong
    He Changchun
    Bai Erhu
    GEOFLUIDS, 2020, 2020
  • [43] Numerical simulation of Hydraulic Fracture Propagation in Heterogeneous Unconventional Reservoir
    Liu, Chunting
    Li, Mingzhong
    Hao, Lihua
    Hu, Hang
    2ND INTERNATIONAL CONFERENCE ON MATERIALS SCIENCE, RESOURCE AND ENVIRONMENTAL ENGINEERING (MSREE 2017), 2017, 1890
  • [44] Numerical Investigation of Complex Hydraulic Fracture Propagation in Shale Formation
    Zheng, Heng
    Li, Fengxia
    Wang, Di
    PROCESSES, 2024, 12 (12)
  • [45] Numerical Simulation of Hydraulic Fracture Propagation in Unconsolidated Sandstone Reservoirs
    Xin, Yicheng
    Yuan, Zheng
    Gao, Yancai
    Wang, Tao
    Wang, Haibiao
    Yan, Min
    Zhang, Shun
    Shi, Xian
    PROCESSES, 2024, 12 (10)
  • [46] Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs
    Zhou T.
    Wang H.
    Li F.
    Li Y.
    Zou Y.
    Zhang C.
    Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, 2020, 47 (05): : 1039 - 1051
  • [47] Numerical investigation of hydraulic fracture propagation interacting with bedding planes
    Zeng, Qingdong
    Bo, Long
    Li, Qin
    Sun, Jianmeng
    Yao, Jun
    ENGINEERING FRACTURE MECHANICS, 2023, 291
  • [48] Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs
    Zhou Tong
    Wang Haibo
    Li Fengxia
    Li Yuanzhao
    Zou Yushi
    Zhang Chi
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2020, 47 (05) : 1117 - 1130
  • [49] Numerical simulation of hydraulic fracture propagation in shale with plastic deformation
    Liu, Chuang
    Wang, Zexing
    INTERNATIONAL JOURNAL OF FRACTURE, 2022, 238 (02) : 115 - 132
  • [50] Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs
    ZHOU Tong
    WANG Haibo
    LI Fengxia
    LI Yuanzhao
    ZOU Yushi
    ZHANG Chi
    Petroleum Exploration and Development, 2020, (05) : 1117 - 1130