Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying Δri = λiri

被引:0
|
作者
Mohammed Bekkar
Bendehiba Senoussi
机构
[1] University of Oran,Department of Mathematics Faculty of Sciences
[2] University of Chlef,Department of Mathematics Faculty of Sciences
关键词
99Z99; 00A00; Laplacian operator; factorable surfaces; minimal surfaces;
D O I
10.1007/s00022-012-0117-3
中图分类号
学科分类号
摘要
In this paper we classify the factorable surfaces in the three-dimensional Euclidean space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{E}^{3}}$$\end{document} and Lorentzian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{E}_{1}^{3}}$$\end{document} under the condition Δri = λiri, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda_{i}\in\mathbb{R}}$$\end{document} and Δ denotes the Laplace operator and we obtain the complete classification for those ones.
引用
收藏
页码:17 / 29
页数:12
相关论文
共 50 条
  • [31] Vorticity equation on surfaces with arbitrary topology embedded in three-dimensional Euclidean space
    Sato, Naoki
    Yamada, Michio
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (09)
  • [32] THREE-DIMENSIONAL LORENTZIAN HOMOGENEOUS RICCI SOLITONS
    Brozos-Vazquez, M.
    Calvaruso, G.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 188 (01) : 385 - 403
  • [33] Three-dimensional homogeneous Lorentzian Yamabe solitons
    E. Calviño-Louzao
    J. Seoane-Bascoy
    M. E. Vázquez-Abal
    R. Vázquez-Lorenzo
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2012, 82 : 193 - 203
  • [34] Superintegrability in three-dimensional Euclidean space
    Kalnins, EG
    Williams, GC
    Miller, W
    Pogosyan, GS
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) : 708 - 725
  • [35] Homogeneous structures on three-dimensional Lorentzian manifolds
    Calvaruso, Giovanni
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (04) : 1279 - 1291
  • [36] Three-dimensional homogeneous Lorentzian Yamabe solitons
    Calvino-Louzao, E.
    Seoane-Bascoy, J.
    Vazquez-Abal, M. E.
    Vazquez-Lorenzo, R.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2012, 82 (02): : 193 - 203
  • [37] Three-dimensional Lorentzian homogeneous Ricci solitons
    M. Brozos-Vázquez
    G. Calvaruso
    E. García-Río
    S. Gavino-Fernández
    Israel Journal of Mathematics, 2012, 188 : 385 - 403
  • [38] On curvature homogeneous three-dimensional Lorentzian manifolds
    Bueken, P
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (04) : 349 - 362
  • [39] LORENTZIAN SYMMETRIC THREE-SPACES AND THE CLASSIFICATION OF THEIR PARALLEL SURFACES
    Calvaruso, G.
    Van der Veken, J.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (10) : 1185 - 1205
  • [40] Classification of Lorentzian surfaces with parallel mean curvature vector in pseudo-Euclidean spaces
    Fu, Yu
    Hou, Zhong-Hua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 25 - 40