Classification of Integrable Equations on Quad-Graphs. The Consistency Approach

被引:0
作者
V.E. Adler
A.I. Bobenko
Yu.B. Suris
机构
[1] Landau Institute of Theoretical Physics,
[2] 12 Institutsky pr.,undefined
[3] 142432 Chernogolovka,undefined
[4] Russia. E-mail: adler@itp.ac.ru,undefined
[5] Institut für Mathematik,undefined
[6] Technische Universität Berlin,undefined
[7] Str. des 17. Juni 136,undefined
[8] 10623 Berlin,undefined
[9] Germany. E-mail: bobenko@math.tu-berlin.de; suris@sfb288.math.tu-berlin.de,undefined
来源
Communications in Mathematical Physics | 2003年 / 233卷
关键词
Integrable System; Spectral Parameter; Discrete System; Symplectic Structure; Exhaustive List;
D O I
暂无
中图分类号
学科分类号
摘要
 A classification of discrete integrable systems on quad–graphs, i.e. on surface cell decompositions with quadrilateral faces, is given. The notion of integrability laid in the basis of the classification is the three–dimensional consistency. This property yields, among other features, the existence of the discrete zero curvature representation with a spectral parameter. For all integrable systems of the obtained exhaustive list, the so called three–leg forms are found. This establishes Lagrangian and symplectic structures for these systems, and the connection to discrete systems of the Toda type on arbitrary graphs. Generalizations of these ideas to the three–dimensional integrable systems and to the quantum context are also discussed.
引用
收藏
页码:513 / 543
页数:30
相关论文
empty
未找到相关数据