Looking for Difference Sets in Groups with Dihedral Images

被引:0
作者
Emily H. Moore
Harriet Pollatsek
机构
[1] Grinnell College,Department of Mathematics and C. S.
[2] Mount Holyoke College,Department of Mathematics and Statistics
来源
Designs, Codes and Cryptography | 2003年 / 28卷
关键词
difference sets; groups; dihedral images;
D O I
暂无
中图分类号
学科分类号
摘要
We prove four theorems about groups with a dihedral (or cyclic) image containing a difference set. For the first two, suppose G, a group of order 2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} with p an odd prime, contains a nontrivial (v, k, λ) difference set D with order n = k − λ prime to p and self-conjugate modulo p. If G has an image of order p, then 0 ≤ 2a + ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document} ≤ 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} for a unique choice of ∈ = ±1, and for a = (k − ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document})/2p. If G has an image of order 2p, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document} ≤ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} and λ ≥ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document}(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document} − 1)/(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} − 1). There are further constraints on n, a and ∈. We give examples in which these theorems imply no difference set can exist in a group of a specified order, including filling in some entries in Smith's extension to nonabelian groups of Lander's tables. A similar theorem covers the case when p|n. Finally, we show that if G contains a nontrivial (v, k, λ) difference set D and has a dihedral image D2m with either (n, m) = 1 or m = pt for p an odd prime dividing n, then one of the C2 intersection numbers of D is divisible by m. Again, this gives some non-existence results.
引用
收藏
页码:45 / 50
页数:5
相关论文
共 50 条
[41]   TENTH POWER QUALIFIED RESIDUE DIFFERENCE SETS [J].
Byard, Kevin .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2009, 5 (05) :797-803
[42]   Image Sharpening Detection Based on Difference Sets [J].
Wang, Dongping ;
Gao, Tiegang ;
Zhang, Yuan .
IEEE ACCESS, 2020, 8 :51431-51445
[43]   On substructures of abelian difference sets with classical parameters [J].
Jennings, Kevin .
JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (03) :182-190
[44]   New Constructions of Disjoint Distinct Difference Sets [J].
Chen W. ;
Chen Z. ;
Kløve T. .
Designs, Codes and Cryptography, 1998, 15 (2) :157-165
[45]   A framework for constructing partial geometric difference sets [J].
James A. Davis ;
Oktay Olmez .
Designs, Codes and Cryptography, 2018, 86 :1367-1375
[46]   On a theorem of Sarkozy for difference sets and shifted primes [J].
Wang, Ruoyi .
JOURNAL OF NUMBER THEORY, 2020, 211 :220-234
[47]   A note on sumsets and difference sets in Z/nZ [J].
Richardson, Christopher J. ;
Spencer, Craig V. .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2012, 18 (03) :45-47
[48]   A framework for constructing partial geometric difference sets [J].
Davis, James A. ;
Olmez, Oktay .
DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (06) :1367-1375
[49]   Constructions of Nested Partial Difference Sets with Galois Rings [J].
John B. Polhill .
Designs, Codes and Cryptography, 2002, 25 :299-309
[50]   Constructions of nested partial difference sets with Galois rings [J].
Polhill, JB .
DESIGNS CODES AND CRYPTOGRAPHY, 2002, 25 (03) :299-309