Looking for Difference Sets in Groups with Dihedral Images

被引:0
作者
Emily H. Moore
Harriet Pollatsek
机构
[1] Grinnell College,Department of Mathematics and C. S.
[2] Mount Holyoke College,Department of Mathematics and Statistics
来源
Designs, Codes and Cryptography | 2003年 / 28卷
关键词
difference sets; groups; dihedral images;
D O I
暂无
中图分类号
学科分类号
摘要
We prove four theorems about groups with a dihedral (or cyclic) image containing a difference set. For the first two, suppose G, a group of order 2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} with p an odd prime, contains a nontrivial (v, k, λ) difference set D with order n = k − λ prime to p and self-conjugate modulo p. If G has an image of order p, then 0 ≤ 2a + ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document} ≤ 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} for a unique choice of ∈ = ±1, and for a = (k − ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document})/2p. If G has an image of order 2p, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document} ≤ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} and λ ≥ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document}(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document} − 1)/(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} − 1). There are further constraints on n, a and ∈. We give examples in which these theorems imply no difference set can exist in a group of a specified order, including filling in some entries in Smith's extension to nonabelian groups of Lander's tables. A similar theorem covers the case when p|n. Finally, we show that if G contains a nontrivial (v, k, λ) difference set D and has a dihedral image D2m with either (n, m) = 1 or m = pt for p an odd prime dividing n, then one of the C2 intersection numbers of D is divisible by m. Again, this gives some non-existence results.
引用
收藏
页码:45 / 50
页数:5
相关论文
共 50 条
  • [31] Codebooks from almost difference sets
    Cunsheng Ding
    Tao Feng
    [J]. Designs, Codes and Cryptography, 2008, 46 : 113 - 126
  • [32] Arithmetic structure in sparse difference sets
    Hamel, Mariah
    Lyall, Neil
    Thompson, Katherine
    Walters, Nathan
    [J]. JOURNAL OF NUMBER THEORY, 2010, 130 (07) : 1581 - 1589
  • [33] A recursive construction for difference systems of sets
    Chisaki, Shoko
    Kimura, Yui
    Miyamoto, Nobuko
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (05) : 1059 - 1068
  • [34] Codebooks from almost difference sets
    Ding, Cunsheng
    Feng, Tao
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2008, 46 (01) : 113 - 126
  • [35] ARITHMETIC PROGRESSIONS IN SUMSETS AND DIFFERENCE SETS
    Mei, Shu-Yuan
    Chen, Yong-Gao
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (03) : 601 - 606
  • [36] A note on power residue difference sets
    Yuan, PZ
    Hu, YH
    [J]. JOURNAL OF ALGEBRA, 2005, 291 (01) : 269 - 273
  • [37] Difference sets with few character values
    Tao Feng
    Sihuang Hu
    Shuxing Li
    Gennian Ge
    [J]. Designs, Codes and Cryptography, 2014, 73 : 825 - 839
  • [38] Almost difference sets and their sequences with optimal autocorrelation
    Arasu, KT
    Ding, CS
    Helleseth, T
    Kumar, PV
    Martinsen, HM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) : 2934 - 2943
  • [39] Nonlinear functions and difference sets on group actions
    Yun Fan
    Bangteng Xu
    [J]. Designs, Codes and Cryptography, 2017, 85 : 319 - 341
  • [40] On some multiplicative properties of large difference sets
    Shkredov, Ilya D.
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (05): : 1538 - 1555