Looking for Difference Sets in Groups with Dihedral Images

被引:0
作者
Emily H. Moore
Harriet Pollatsek
机构
[1] Grinnell College,Department of Mathematics and C. S.
[2] Mount Holyoke College,Department of Mathematics and Statistics
来源
Designs, Codes and Cryptography | 2003年 / 28卷
关键词
difference sets; groups; dihedral images;
D O I
暂无
中图分类号
学科分类号
摘要
We prove four theorems about groups with a dihedral (or cyclic) image containing a difference set. For the first two, suppose G, a group of order 2p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} with p an odd prime, contains a nontrivial (v, k, λ) difference set D with order n = k − λ prime to p and self-conjugate modulo p. If G has an image of order p, then 0 ≤ 2a + ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document} ≤ 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} for a unique choice of ∈ = ±1, and for a = (k − ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document})/2p. If G has an image of order 2p, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document} ≤ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} and λ ≥ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document}(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt n$$ \end{document} − 1)/(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\tilde q$$ \end{document} − 1). There are further constraints on n, a and ∈. We give examples in which these theorems imply no difference set can exist in a group of a specified order, including filling in some entries in Smith's extension to nonabelian groups of Lander's tables. A similar theorem covers the case when p|n. Finally, we show that if G contains a nontrivial (v, k, λ) difference set D and has a dihedral image D2m with either (n, m) = 1 or m = pt for p an odd prime dividing n, then one of the C2 intersection numbers of D is divisible by m. Again, this gives some non-existence results.
引用
收藏
页码:45 / 50
页数:5
相关论文
共 50 条
  • [21] Sets in Zm whose difference sets avoid squares
    Gabdullin, M. R.
    SBORNIK MATHEMATICS, 2018, 209 (11) : 1603 - 1610
  • [22] Difference sets and shifted primes
    Lucier, J.
    ACTA MATHEMATICA HUNGARICA, 2008, 120 (1-2) : 79 - 102
  • [23] Difference sets and shifted primes
    J. Lucier
    Acta Mathematica Hungarica, 2008, 120 : 79 - 102
  • [24] Tensor product of difference sets
    Hu, Jianhua
    Yu, Zhijian
    Xie, Suzhen
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) : 1185 - 1189
  • [25] On qualified residue difference sets
    Byard, Kevin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (04) : 591 - 597
  • [26] New spence difference sets
    Davis, James A.
    Polhill, John
    Smith, Ken
    Swartz, Eric
    Webster, Jordan
    DESIGNS CODES AND CRYPTOGRAPHY, 2024,
  • [27] Polynomial configurations in difference sets
    Lyall, Neil
    Magyar, Akos
    JOURNAL OF NUMBER THEORY, 2009, 129 (02) : 439 - 450
  • [28] Difference sets with few character values
    Feng, Tao
    Hu, Sihuang
    Li, Shuxing
    Ge, Gennian
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (03) : 825 - 839
  • [29] A recursive construction for difference systems of sets
    Shoko Chisaki
    Yui Kimura
    Nobuko Miyamoto
    Designs, Codes and Cryptography, 2019, 87 : 1059 - 1068
  • [30] Arithmetic structure in sparse difference sets
    Hamel, Mariah
    Lyall, Neil
    Thompson, Katherine
    Walters, Nathan
    JOURNAL OF NUMBER THEORY, 2010, 130 (07) : 1581 - 1589