Design and analysis of a high-sensitivity fan-shaped photonic crystal fiber sensor based on surface plasmon resonance

被引:0
|
作者
Wei An
Chao Li
Dong Wang
Wenya Chen
Shijing Guo
Song Gao
Chunwei Zhang
机构
[1] University of Jinan,School of Information Science and Engineering
[2] Shandong Provincial Key Laboratory of Network-Based Intelligent Computing,undefined
来源
Optical and Quantum Electronics | 2023年 / 55卷
关键词
Photonic crystal fiber ; Surface plasmon resonance; Refractive index ‍sensor; Finite element method;
D O I
暂无
中图分类号
学科分类号
摘要
A high-sensitivity fan-shaped photonic crystal fiber sensor based on surface plasmon resonance (SPR) is proposed and theoretically analyzed. In order to excite SPR, Indium Tin Oxide (ITO) is deposited on the arc area. The proposed sensor is operated within the large near infrared region (1000–2000 nm). The sensing performance and coupling characteristics are thoroughly explored through finite element method. Simulation results show that the sensor exhibits an optimum wavelength sensitivity (WS) of 10,500 nm/RIU and resolution of 9.524 × 10−6 ‍RIU. The best amplitude sensitivity can be up to 144.43 RIU−1, corresponding to the resolution of 6.92 × 10−6 RIU. Also, an ideal figure of merit (FOM) of 73.32 RIU−1 can be achieved when the analyte refractive index (RI) is 1.386. In a large wavelength range, the sensor shows a distinctly sharp loss peak that is easy to conduct and monitor. The sensor can detect the RI of unknown analyte in the range of 1.336–1.396. The sensor has a promising stability in fabrication tolerance. By adjusting the structure parameters, it shows that solely the thickness of ITO layer has effect on sensing ability. Slight difference of other parameters can barely influence the sensor. Application of the proposed sensor can be found in multiple fields such as bio-chemical sensing, food safety and environmental monitoring, etc.
引用
收藏
相关论文
共 50 条
  • [21] Surface plasmon resonance sensor based on a novel grapefruit photonic crystal fiber
    Zhang Peipei
    Yao Jianquan
    Jing Lei
    Cui Haixia
    Lu Ying
    22ND INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, PTS 1-3, 2012, 8421
  • [22] Design and analysis of surface plasmon resonance based photonic crystal fiber sensor employing gold nanowires
    Soghra, Ghahramani
    Jamal, Barvestani
    Bahar, Meshginqalam
    OPTIK, 2022, 260
  • [23] High Sensitivity and Wide Range Refractive Index Sensor Based on Surface Plasmon Resonance Photonic Crystal Fiber
    Wang, Fengmin
    Wei, Yong
    Han, Yanhong
    SENSORS, 2023, 23 (14)
  • [24] D-Shaped Photonic Crystal Fiber based Surface Plasmon Resonance Sensor
    Yasli, Ahmet
    Ademgil, Huseyin
    Haxha, Shyqyri
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [25] Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel
    Liu, Chao
    Yang, Lin
    Su, Weiquan
    Wang, Famei
    Sun, Tao
    Liu, Qiang
    Mu, Haiwei
    Chu, Paul K.
    OPTICS COMMUNICATIONS, 2017, 382 : 162 - 166
  • [26] High-sensitivity ring-core photonic crystal fiber sensor based on surface plasmon resonance for ultra-low refractive index detection
    Xu, Luhui
    Peng, Chao
    Meng, Tongyu
    Shi, Ying
    Liu, Qiang
    Lv, Jingwei
    Liu, Wei
    Chu, Paul K.
    Liu, Chao
    MODERN PHYSICS LETTERS B, 2024, 38 (02):
  • [27] High sensitivity surface plasmon resonance sensor based on D-shaped high birefringence photonic crystal fibre
    Pan, Fei
    Zhang, Ailing
    Pan, Honggang
    Cao, Chuanbo
    JOURNAL OF MODERN OPTICS, 2022, 69 (10) : 575 - 582
  • [28] Design and theoretical analysis of a photonic crystal fiber based on surface plasmon resonance sensing
    Liu, Chao
    Wang, Famei
    Lv, Jingwei
    Sun, Tao
    Liu, Qiang
    Mu, Haiwei
    Chu, Paul K.
    JOURNAL OF NANOPHOTONICS, 2015, 9
  • [29] A PHOTONIC CRYSTAL FIBER BASED ON SURFACE PLASMON RESONANCE TEMPERATURE SENSOR WITH LIQUID CORE
    Bing, P. B.
    Li, Z. Y.
    Yao, J. Q.
    Lu, Y.
    Di, Z. G.
    MODERN PHYSICS LETTERS B, 2012, 26 (13):
  • [30] Photonic crystal fiber refractive index sensor based on surface plasmon resonance
    Chen, Jiahua
    Brabant, Daniel
    Bock, Wojtek J.
    Mikulic, Predrag
    Eftimov, Tinko
    PHOTONICS NORTH 2010, 2010, 7750