On the duality of variable Triebel–Lizorkin spaces

被引:0
|
作者
Douadi Drihem
机构
[1] M’sila University,Laboratory of Functional Analysis and Geometry of Spaces, Department of Mathematics
来源
Collectanea Mathematica | 2020年 / 71卷
关键词
Besov-type space; Triebel–Lizorkin spaces; Duality; Variable exponent; Primary 46B10; Secondary 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to prove the duality of Triebel–Lizorkin spaces F1,q·α·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F_{1,q\left( \cdot \right) }^{\alpha \left( \cdot \right) }$$\end{document}. First, we prove the duality of associated sequence spaces. The result follows from the so-called φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-transform characterization in the sense of Frazier and Jawerth.
引用
收藏
页码:263 / 278
页数:15
相关论文
共 50 条
  • [41] Decompositions with Atoms and Molecules for Variable Exponent Triebel-Lizorkin-Morrey Spaces
    Caetano, Antonio
    Kempka, Henning
    CONSTRUCTIVE APPROXIMATION, 2021, 53 (01) : 201 - 234
  • [42] 2-Microlocal Besov and Triebel-Lizorkin Spaces of Variable Integrability
    Kempka, Henning
    REVISTA MATEMATICA COMPLUTENSE, 2009, 22 (01): : 227 - 251
  • [43] Triebel–Lizorkin spaces with variable smoothness and integrability on Lie groups of polynomial growth
    Jingxuan Fang
    Jiman Zhao
    Journal of Pseudo-Differential Operators and Applications, 2018, 9 : 891 - 902
  • [44] Variable 2-Microlocal Besov–Triebel–Lizorkin-Type Spaces
    Su Qing Wu
    Da Chun Yang
    Wen Yuan
    Ci Qiang Zhuo
    Acta Mathematica Sinica, English Series, 2018, 34 : 699 - 748
  • [45] Variable 2-Microlocal Besov–Triebel–Lizorkin-Type Spaces
    Su Qing WU
    Da Chun YANG
    Wen YUAN
    Ci Qiang ZHUO
    Acta Mathematica Sinica,English Series, 2018, 34 (04) : 699 - 748
  • [46] Variable 2-Microlocal Besov-Triebel-Lizorkin-Type Spaces
    Wu, Su Qing
    Yang, Da Chun
    Yuan, Wen
    Zhuo, Ci Qiang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (04) : 699 - 748
  • [47] GENERALIZED BESOV SPACES AND TRIEBEL-LIZORKIN SPACES
    Chin-Cheng Lin
    AnalysisinTheoryandApplications, 2008, 24 (04) : 336 - 350
  • [48] Variable 2-Microlocal Besov–Triebel–Lizorkin-Type Spaces
    Su Qing WU
    Da Chun YANG
    Wen YUAN
    Ci Qiang ZHUO
    Acta Mathematica Sinica, 2018, 34 (04) : 699 - 748
  • [49] The Boundedness of Commutators of Sublinear Operators on Herz Triebel–Lizorkin Spaces with Variable Exponent
    Chenglong Fang
    Yingying Wei
    Jing Zhang
    Results in Mathematics, 2023, 78
  • [50] Characterizations of Morrey type Besov and Triebel-Lizorkin spaces with variable exponents
    Fu, Jingjing
    Xu, Jingshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (01) : 280 - 298