The eta invariant and equivariant bordism of flat manifolds with cyclic holonomy group of odd prime order

被引:0
作者
Peter B. Gilkey
Roberto J. Miatello
Ricardo A. Podestá
机构
[1] University of Oregon,Mathematics Department
[2] FaMAF – CIEM,undefined
[3] Universidad Nacional de Córdoba,undefined
来源
Annals of Global Analysis and Geometry | 2010年 / 37卷
关键词
Flat manifolds; Eta invariant; Equivariant bordism; 58J53;
D O I
暂无
中图分类号
学科分类号
摘要
We study the eta invariants of compact flat spin manifolds of dimension n with holonomy group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}_p}$$\end{document}, where p is an odd prime. We find explicit expressions for the twisted and relative eta invariants and show that the reduced eta invariant is always an integer, except in a single case, when p = n = 3. We use the expressions obtained to show that any such manifold is trivial in the appropriate reduced equivariant spin bordism group.
引用
收藏
页码:275 / 306
页数:31
相关论文
共 44 条
[1]  
Ambrose W.(1953)A theorem on holonomy Trans. Am. Math. Soc. 75 428-443
[2]  
Singer I.M.(1966)Spin cobordism Bull. Am. Math. Soc. 72 256-260
[3]  
Anderson D.W.(1967)The structure of the Spin cobordism ring Ann. Math. 86 271-298
[4]  
Brown E.H.(1975)Spectral asymmetry and Riemannian geometry I Math. Proc. Camb. Phil. Soc. 77 43-69
[5]  
Peterson F.P.(1989)The complex bordism of groups with periodic cohomology Trans. Am. Math. Soc. 316 673-687
[6]  
Anderson D.W.(1989)The relationship between complex bordism and K-theory for groups with periodic cohomology Contemp. Math. 96 19-31
[7]  
Brown E.H.(1997)The Gromov–Lawson–Rosenberg conjecture for groups with periodic cohomology J. Differ. Geom. 46 374-405
[8]  
Peterson F.P.(1965)Compact flat Riemannian manifolds I Ann. Math. 81 15-30
[9]  
Atiyah M.F.(2001)Computation of five and six dimensional Bieberbach groups Exp. Math. 10 109-115
[10]  
Patodi F.K.(2006)Describing the platycosms Math. Res. Lett. 13 475-494