Picone’s identity for biharmonic operators on Heisenberg group and its applications

被引:0
作者
Gaurav Dwivedi
Jagmohan Tyagi
机构
[1] Indian Institute of Technology Gandhinagar,
来源
Nonlinear Differential Equations and Applications NoDEA | 2016年 / 23卷
关键词
Bi-Laplacian; Variational methods; Hardy-Rellich type inequality; Morse index; Caccioppoli inequality; Picone inequality; Picone’s identity on Heisenberg group; Primary 35J91; Secondary 35B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish a nonlinear analogue of Picone’s identity for biharmonic operators on Heisenberg group. As an applications of Picone’s identity, we obtain Hardy-Rellich type inequality, Morse index, Caccioppoli inequality, Picone inequality for biharmonic operators on Heisenberg group.
引用
收藏
相关论文
共 60 条
  • [1] Abdellaoui B.(2003)Existence and nonexistence results for quasilinear elliptic equations involving the p-Laplacian with a critical potential Annali di Matematica Pura ED Applicata 182 247-270
  • [2] Peral I.(1986)Positive solutions and spectral properties of weakly coupled elliptic systems J. Math. Anal. Appl. 120 723-729
  • [3] Allegretto W.(1987)On the principal eigenvalues of indefinite elliptic problems Math. Z. 195 29-35
  • [4] Allegretto W.(1985)Sturmian theorems for second order systems Proc. Am. Math. Soc. 94 291-296
  • [5] Allegretto W.(1998)A Picone’s identity for the p-Laplacian and applications Nonlinear Anal. 32 819-830
  • [6] Allegretto W.(2013)Generalized Picone’s identity and its applications Electron. J. Differ. Equ. 243 1-6
  • [7] Huang Y.X.(1995)Variational methods for indefinite superlinear homogeneous elliptic problems NoDEA Nonlinear Differ. Equ. Appl. 4 553-572
  • [8] Bal K.(2012)Picone-type identity for pseudo p-Laplacian with variable power Electron. J. Differ. Equ. 174 1-8
  • [9] Berestycki H.(1969)Principe du maximum, inégalité de Harnack et unicité du probleme de Cauchy pour les opärateurs elliptiques dégénérés Annales de l’institut Fourier 19 277-304
  • [10] Capuzzo-Dolcetta I.(1977)Remarks on some fourth order variational inequalities. Ann Scuola Norm. Sup. Pisa Cl. Sci. 4 363-371