Transcendance et indépendance algébrique: Liens entre les points de vue elliptique et modulaire

被引:0
作者
Diaz G. [1 ]
机构
[1] Equipe de Théorie des Nombres, Université de Saint-Etienne, 42023 Saint-Etienne Cédex 2, 23, Rue Paul Michelon
关键词
Algebraic independence; Eisenstein's series; Elliptic functions; Modular invariant; Transcendental numbers;
D O I
10.1023/A:1009879120323
中图分类号
学科分类号
摘要
There exist, now, numerous transcendental and algebraic independence results about elliptic and modular functions i.e. E2, E4, E6, the standard Eisenstein series, j the modular invariant . . . (works done by T. Schneider, D. Masser, G.V. Chudnovsky, Y. Nesterenko, P. Philippon . . . ). Transcendence properties of modular functions have been studied by using their relations with periods of elliptic integrals; and until 1996, all results about these modular functions were corollaries of "elliptic results" (i.e. results established by means of Weierstrass elliptic functions and elliptic curves). With the proof of Mahler-Manin conjecture (1995) and Nesterenko-Philippon works (1996), we can now get new elliptic and exponential results from modular ones (for example this corollary of Nesterenko's paper "π and exp(π) are algebraically independent", striking result which owes nothing to the exponential function). My aim is twofold: (1) to recall classical links between elliptic and modular functions and to translate algebraic independence results from one setting to the other; (2) to show that this translation suggests a lot of conjectures.
引用
收藏
页码:157 / 199
页数:42
相关论文
共 36 条
[21]  
Philippon P., Indépendance algébrique et K-fonctions, J. Reine Angew. Math., 497, pp. 1-15, (1998)
[22]  
Ramanujan S., On certain arithmetical functions, Trans. Cambridge Philo. Soc., 22, 9, pp. 159-184, (1916)
[23]  
Reyssat E., Propriétés d'indépendance algébrique de nombres liés aux fonctions de Weierstrass, Acta Arit., 41, pp. 291-310, (1982)
[24]  
Roy D., Waldschmidt M., Simultaneous approximation and algebraic independence, The Ramanujan J., 1, pp. 379-430, (1997)
[25]  
Saradha N., Transcendence measure for η/ω, Acta Ariz.
[26]  
Schneider T., Arithmetische untersuchungen elliptischer integrale, Math. Ann., 113, pp. 1-13, (1937)
[27]  
Schneider Th., Introduction aux Nombres Transcendants, (1959)
[28]  
Serre J.P., Cours d'Arithmétique, (1970)
[29]  
Siegel C.L., Über die perioden elliptischer funktionen, J. Reine Angew. Math., 167, pp. 62-69, (1932)
[30]  
Silverman J., Advanced Topics in the Arithmetic of Elliptic Curves, (1994)