Equivalence of two conjectures on equitable coloring of graphs

被引:0
作者
Bor-Liang Chen
Ko-Wei Lih
Chih-Hung Yen
机构
[1] National Taichung Institute of Technology,Department of Business Administration
[2] Academia Sinica,Institute of Mathematics
[3] National Chiayi University,Department of Applied Mathematics
来源
Journal of Combinatorial Optimization | 2013年 / 25卷
关键词
Equitable coloring; Maximum coloring; -equitable graph; Maximum degree; Independence number;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G is said to be equitably k-colorable if there exists a proper k-coloring of G such that the sizes of any two color classes differ by at most one. Let Δ(G) denote the maximum degree of a vertex in G. Two Brooks-type conjectures on equitable Δ(G)-colorability have been proposed in Chen and Yen (Discrete Math., 2011) and Kierstead and Kostochka (Combinatorica 30:201–216, 2010) independently. We prove the equivalence of these conjectures.
引用
收藏
页码:501 / 504
页数:3
相关论文
共 10 条
  • [1] Brooks RL(1941)On colouring the nodes of a network Proc Camb Philos Soc 37 194-197
  • [2] Chen B-L(1994)Equitable coloring and the maximum degree Eur J Comb 15 443-447
  • [3] Lih K-W(2008)Chromatic coloring with a maximum color class Discrete Math 308 5533-5537
  • [4] Wu P-L(2010)Equitable versus nearly equitable coloring and the Chen-Lih-Wu conjecture Combinatorica 30 201-216
  • [5] Chen B-L(1973)Equitable coloring Am Math Mon 80 920-922
  • [6] Huang K-C(undefined)undefined undefined undefined undefined-undefined
  • [7] Yen C-H(undefined)undefined undefined undefined undefined-undefined
  • [8] Kierstead HA(undefined)undefined undefined undefined undefined-undefined
  • [9] Kostochka AV(undefined)undefined undefined undefined undefined-undefined
  • [10] Meyer W(undefined)undefined undefined undefined undefined-undefined