The Radon Number of the Three-Dimensional Integer Lattice

被引:0
|
作者
Károly Bezdek
Aart Blokhuis
机构
[1] Department of Geometry,
[2] Eötvös University,undefined
[3] Pázm\’any Péter sétány 1/c,undefined
[4] H-1117 Budapest,undefined
[5] Department of Mathematics and Computing Science,undefined
[6] Eindhoven University of Technology,undefined
[7] P.O. Box 513,undefined
[8] 5600 MB Eindhoven ,undefined
来源
Discrete & Computational Geometry | 2003年 / 30卷
关键词
Euclidean Space; Convex Hull; Integer Point; Integer Lattice; Radon Number;
D O I
暂无
中图分类号
学科分类号
摘要
In this note we prove that the Radon number of the three-dimensional integer lattice is at most 17, that is, any set of 17 points with integral coordinates in the three-dimensional Euclidean space can be partitioned into two sets such that their convex hulls have an integer point in common.
引用
收藏
页码:181 / 184
页数:3
相关论文
共 50 条
  • [1] The radon number of the three-dimensional integer lattice
    Bezdek, K
    Blokhuis, A
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (02) : 181 - 184
  • [3] The average number of relative minima of three-dimensional integer lattices of a given determinant
    Illarionov, A. A.
    IZVESTIYA MATHEMATICS, 2012, 76 (03) : 535 - 562
  • [4] OPTIMAL FAMILIES OF TWO AND THREE-DIMENSIONAL LATTICE PACKINGS FROM POLYNOMIALS WITH INTEGER COEFFICIENTS
    Flores, Andre Luiz
    Interlando, J. Carmelo
    Nunes Lopes, Jose Valter
    Da Nobrega Neto, Trajano Pires
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2009, 15 (01): : 45 - 51
  • [5] ON THE THREE-DIMENSIONAL WIENER NUMBER
    Bogdanov, B.
    Nikolic, S.
    Trinajstic, N.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 1989, 3 (03) : 299 - 309
  • [6] The number of bound states of a one-particle Hamiltonian on a three-dimensional lattice
    S. N. Lakaev
    I. N. Bozorov
    Theoretical and Mathematical Physics, 2009, 158 : 360 - 376
  • [7] THE NUMBER OF BOUND STATES OF A ONE-PARTICLE HAMILTONIAN ON A THREE-DIMENSIONAL LATTICE
    Lakaev, S. N.
    Bozorov, I. N.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 158 (03) : 360 - 376
  • [8] Remarks on the three-dimensional lattice model
    Hu, ZN
    CHINESE PHYSICS LETTERS, 1996, 13 (06): : 412 - 415
  • [9] Lattice three-dimensional skyrmions revisited
    Charalampidis, E. G.
    Ioannidou, T. A.
    Kevrekidis, P. G.
    PHYSICA SCRIPTA, 2015, 90 (02)
  • [10] Three-dimensional lattice of ion traps
    Ravi, K.
    Lee, Seunghyun
    Sharma, Arijit
    Ray, Tridib
    Werth, G.
    Rangwala, S. A.
    PHYSICAL REVIEW A, 2010, 81 (03):