Emission enhancement in hybrid Tamm plasmon/photonic quasicrystal structure

被引:0
作者
Konstantin M. Morozov
Konstantin A. Ivanov
Aleksei V. Belonovskii
Elizaveta I. Girshova
机构
[1] St. Petersburg Academic University,
[2] ITMO University,undefined
来源
SN Applied Sciences | 2019年 / 1卷
关键词
Plasmonics; Tamm plasmon; Photonic quasicrystal; Purcell effect;
D O I
暂无
中图分类号
学科分类号
摘要
We have theoretically demonstrated that Tamm plasmon structure with photonic quasicrystal instead of usual distributed Bragg reflector can support hybrid Tamm plasmon-like optical eigenstates. The model structure consists of a SiO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}/Ta2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_5$$\end{document} optical Fibonacci system with a thin silver layer on the top. F7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_7$$\end{document}-based hybrid cavity was analyzed by means of calculation reflectivity spectrum and electric field profiles of the localized states. Also, evaluation of the modal Purcell factor for hybrid structure demonstrates significant enhancing of spontaneous decay rate for emitter coupled with Tamm plasmon-like states. The results can be used in fabrication of high-efficient organic-based light emission systems.
引用
收藏
相关论文
共 107 条
[1]  
Khurgin JB(2015)How to deal with the loss in plasmonics and metamaterials Nat Nanotechnol 10 2-undefined
[2]  
Kaliteevski MA(2015)Experimental demonstration of reduced light absorption by intracavity metallic layers in Tamm plasmon-based microcavity Plasmonics 10 281-undefined
[3]  
Lazarenko AA(2017)Enhancement of spontaneous emission in Tamm plasmon structures Sci Rep 7 9014-undefined
[4]  
Il’inskaya ND(2012)Single photon source using confined Tamm plasmon modes Appl Phys Lett 100 232111-undefined
[5]  
Zadiranov YM(2013)Confined Tamm plasmon lasers Nano Lett 13 3179-undefined
[6]  
Sasin ME(2014)Tamm plasmon resonance in mesoporous multilayers: toward a sensing application ACS Photon 1 775-undefined
[7]  
Zaitsev D(2017)Tamm plasmons, hot electrons, photodetector, photoresponsivity, surface plasmons ACS Nano 11 1719-undefined
[8]  
Mazlin VA(2013)Optics of photonic quasicrystals Nat Photon 7 177-undefined
[9]  
Brunkov PN(1994)Localization of light waves in Fibonacci dielectric multilayers Phys Rev Lett 72 633-undefined
[10]  
Pavlov SI(2002)Bandgap structure of optical Fibonacci lattices after light diffraction Opt Spectrosc 91 109-undefined