Computation of the relaxation and creep functions of elastomers from harmonic shear modulus

被引:0
|
作者
Hocine Bechir
Mourad Idjeri
机构
[1] University of A. MIRA,Laboratoire de Physique Théorique (LPT)
来源
关键词
Linear viscoelasticity; Complex modulus; Fractional derivative; Relaxation spectrum; Creep compliance; Elastomers;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to compute the relaxation and creep functions from the data of shear complex modulus, G∗(iν). The experimental data are available in the frequency window ν∈[νmin ,νmax ] in terms of the storage G′(ν) and loss G″(ν) moduli. The loss factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta( \nu) = \frac{G''( \nu )}{G'(\nu )}$\end{document} is asymmetrical function. Therefore, a five-parameter fractional derivative model is used to predict the complex shear modulus, G∗(iν). The corresponding relaxation spectrum is evaluated numerically because the analytical solution does not exist. Thereby, the fractional model is approximated by a generalized Maxwell model and its rheological parameters (Gk,τk,N) are determined leading to the discrete relaxation spectrum G(t) valid in time interval corresponding to the frequency window of the input experimental data. Based on the deterministic approach, the creep compliance J(t) is computed on inversing the relaxation function G(t).
引用
收藏
页码:119 / 138
页数:19
相关论文
共 50 条
  • [31] EQUIVALENT EFFECTS OF TIME AND TEMPERATURE IN THE SHEAR CREEP AND RECOVERY OF ELASTOMERS
    CONANT, FS
    HALL, GL
    LYONS, WJ
    PHYSICAL REVIEW, 1950, 78 (03): : 357 - 357
  • [32] EQUIVALENT EFFECTS OF TIME AND TEMPERATURE IN THE SHEAR CREEP AND RECOVERY OF ELASTOMERS
    CONANT, FS
    HALL, GL
    LYONS, WJ
    JOURNAL OF APPLIED PHYSICS, 1950, 21 (06) : 499 - 504
  • [33] THE BOUNDARY MODULUS OF CONTINUITY OF HARMONIC-FUNCTIONS
    JOHNSTON, EH
    PACIFIC JOURNAL OF MATHEMATICS, 1980, 90 (01) : 87 - 98
  • [34] ON HARMONIC-FUNCTIONS WITH INTEGRABLE MAXIMUM MODULUS
    CLUNIE, JG
    RIPPON, PJ
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1983, 8 (02): : 333 - 341
  • [35] ELASTOMERIC ADHESIVE PROPERTIES - SHEAR-STRENGTH, SHEAR MODULUS, CREEP, AND RECOVERY
    DONG, CC
    HOYLE, RJ
    WOOD AND FIBER, 1976, 8 (02): : 98 - 106
  • [36] Complex shear modulus quantification from acoustic radiation force creep-recovery and shear wave propagation
    Amador, Carolina
    Urban, Matthew W.
    Chen, Shigao
    Greenleaf, James F.
    2012 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2012, : 1850 - 1853
  • [37] Numerical calculation on shear modulus of magnetorheological elastomers with columnar or layered structures
    Zhu, Ying-Shun
    Gong, Xing-Long
    Zhang, Pei-Qiang
    Gongneng Cailiao/Journal of Functional Materials, 2006, 37 (05): : 720 - 722
  • [38] Interconversion between relaxation modulus and creep compliance for viscoelastic solids
    Park, SW
    Kim, YR
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 1999, 11 (01) : 76 - 82
  • [39] Modeling of Magneto-Rheological Elastomers for Harmonic Shear Deformation
    Eem, Seung-Hyun
    Jung, Hyung-Jo
    Koo, Jeong-Hoi
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (11) : 3080 - 3083
  • [40] ON THE DAMPING FUNCTION OF SHEAR RELAXATION MODULUS FOR ENTANGLED POLYMERS
    OSAKI, K
    RHEOLOGICA ACTA, 1993, 32 (05) : 429 - 437