Computation of the relaxation and creep functions of elastomers from harmonic shear modulus

被引:0
|
作者
Hocine Bechir
Mourad Idjeri
机构
[1] University of A. MIRA,Laboratoire de Physique Théorique (LPT)
来源
关键词
Linear viscoelasticity; Complex modulus; Fractional derivative; Relaxation spectrum; Creep compliance; Elastomers;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to compute the relaxation and creep functions from the data of shear complex modulus, G∗(iν). The experimental data are available in the frequency window ν∈[νmin ,νmax ] in terms of the storage G′(ν) and loss G″(ν) moduli. The loss factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta( \nu) = \frac{G''( \nu )}{G'(\nu )}$\end{document} is asymmetrical function. Therefore, a five-parameter fractional derivative model is used to predict the complex shear modulus, G∗(iν). The corresponding relaxation spectrum is evaluated numerically because the analytical solution does not exist. Thereby, the fractional model is approximated by a generalized Maxwell model and its rheological parameters (Gk,τk,N) are determined leading to the discrete relaxation spectrum G(t) valid in time interval corresponding to the frequency window of the input experimental data. Based on the deterministic approach, the creep compliance J(t) is computed on inversing the relaxation function G(t).
引用
收藏
页码:119 / 138
页数:19
相关论文
共 50 条
  • [21] MODULUS OF CONTINUITY OF HARMONIC-FUNCTIONS
    HINKKANEN, A
    JOURNAL D ANALYSE MATHEMATIQUE, 1988, 51 : 1 - 29
  • [22] An Elementary Formula for the Initial Relaxation Modulus from the Creep Compliance for Asphalt Mixtures
    Chen, Songqiang
    Chen, Bin
    Wu, Xi
    Zhou, Jian
    MATERIALS, 2023, 16 (18)
  • [23] On the nature of the shear viscosity and shear modulus relaxation in metallic glasses
    Tsyplakov, A. N.
    Khonik, V. A.
    Makarov, A. S.
    Mitrofanov, Yu P.
    Afonin, G. V.
    Kobelev, N. P.
    Konchakov, R. A.
    Lysenko, A. V.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (34)
  • [24] IMPROVED NUMERICAL INTERCONVERSION FOR CREEP COMPLIANCE AND RELAXATION MODULUS
    KNOFF, WF
    HOPKINS, IL
    JOURNAL OF APPLIED POLYMER SCIENCE, 1972, 16 (11) : 2963 - &
  • [25] Shear Dynamic Modulus of Nematic Elastomers: Modified Rouse Model
    Toshchevikov, Vladimir P.
    Gotlib, Yuli Ya
    MACROMOLECULES, 2009, 42 (09) : 3417 - 3429
  • [26] Structural relaxation monitored by instantaneous shear modulus
    Olsen, NB
    Dyre, JC
    Christensen, T
    PHYSICAL REVIEW LETTERS, 1998, 81 (05) : 1031 - 1033
  • [27] Shear stress relaxation of dental ceramics determined from creep behavior
    DeHoff, PH
    Anusavice, KJ
    DENTAL MATERIALS, 2004, 20 (08) : 717 - 725
  • [28] On the direct estimation of creep and relaxation functions
    Sorvari, Joonas
    Malinen, Matti
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2007, 11 (02) : 143 - 157
  • [29] NEW CLASS OF CREEP RELAXATION FUNCTIONS
    HAZANOV, S
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1995, 32 (02) : 165 - 172
  • [30] On the direct estimation of creep and relaxation functions
    Joonas Sorvari
    Matti Malinen
    Mechanics of Time-Dependent Materials, 2007, 11