Computation of the relaxation and creep functions of elastomers from harmonic shear modulus

被引:0
|
作者
Hocine Bechir
Mourad Idjeri
机构
[1] University of A. MIRA,Laboratoire de Physique Théorique (LPT)
来源
关键词
Linear viscoelasticity; Complex modulus; Fractional derivative; Relaxation spectrum; Creep compliance; Elastomers;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to compute the relaxation and creep functions from the data of shear complex modulus, G∗(iν). The experimental data are available in the frequency window ν∈[νmin ,νmax ] in terms of the storage G′(ν) and loss G″(ν) moduli. The loss factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta( \nu) = \frac{G''( \nu )}{G'(\nu )}$\end{document} is asymmetrical function. Therefore, a five-parameter fractional derivative model is used to predict the complex shear modulus, G∗(iν). The corresponding relaxation spectrum is evaluated numerically because the analytical solution does not exist. Thereby, the fractional model is approximated by a generalized Maxwell model and its rheological parameters (Gk,τk,N) are determined leading to the discrete relaxation spectrum G(t) valid in time interval corresponding to the frequency window of the input experimental data. Based on the deterministic approach, the creep compliance J(t) is computed on inversing the relaxation function G(t).
引用
收藏
页码:119 / 138
页数:19
相关论文
共 50 条
  • [1] Computation of the relaxation and creep functions of elastomers from harmonic shear modulus
    Bechir, Hocine
    Idjeri, Mourad
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2011, 15 (02) : 119 - 138
  • [2] Exact computation of creep compliance and relaxation modulus from complex modulus measurement data
    Parot, J. -M.
    Duperray, B.
    MECHANICS OF MATERIALS, 2008, 40 (07) : 575 - 585
  • [3] From dynamic modulus via different relaxation spectra to relaxation and creep functions
    Malkin, AY
    Masalova, I
    RHEOLOGICA ACTA, 2001, 40 (03) : 261 - 271
  • [4] From dynamic modulus via different relaxation spectra to relaxation and creep functions
    Alexander Ya. Malkin
    Irima Masalova
    Rheologica Acta, 2001, 40 : 261 - 271
  • [5] On the variation of the experimental shear modulus of elastomers
    Rahim, M. I. Seth A.
    Kamarudin, A. M.
    9TH NATIONAL SYMPOSIUM ON POLYMERIC MATERIALS (NSPM 2009), 2010, 11
  • [6] Dynamic shear modulus of isotropic elastomers
    Squires, AM
    Tajbakhsh, AR
    Terentjev, EM
    MACROMOLECULES, 2004, 37 (04) : 1652 - 1659
  • [7] MODULUS AND RELAXATION OF ELASTOMERS IN TORSION AT LOW TEMPERATURES
    MOONEY, M
    WOLSTENHOLME, WE
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1952, 44 (02): : 335 - 342
  • [8] SHEAR MODULUS DETERMINATION OF FOAMED ALUMINUM AND ELASTOMERS
    DUBBELDAY, PS
    RITTENMYER, KM
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 1986, 33 (01) : 116 - 116
  • [9] EFFECT OF CREEP ON SHEAR MODULUS OF CLAYS
    ATHANASOPOULOS, GA
    RICHART, FE
    JOURNAL OF GEOTECHNICAL ENGINEERING-ASCE, 1983, 109 (10): : 1217 - 1231
  • [10] Stress relaxation, creep and set recovery of elastomers
    Yamaguchi, Ken
    Thomas, Alan G.
    Busfield, James J. C.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2015, 68 : 66 - 70