The asymptotic property for nonlinear fourth-order Schrödinger equation with gain or loss

被引:0
|
作者
Cuihua Guo
机构
[1] Shanxi University,School of Mathematical Science
来源
关键词
nonlinear fourth-order Schrödinger equation with gain or loss; Fourier restriction norm method; Cauchy problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Cauchy problem of the nonlinear fourth-order Schrödinger equation with gain or loss: iut+△2u+λ|u|αu+iεa(t)|u|βu=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$iu_{t}+\triangle^{2}u+\lambda|u|^{\alpha}u +i\varepsilon a(t)|u|^{\beta}u=0$\end{document}, x∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in R^{n}$\end{document}, t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in R$\end{document}, where 2≤α≤8n−4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\leq\alpha\leq\frac{8}{n-4}$\end{document} and 2≤β≤8n−4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\leq\beta\leq\frac{8}{n-4}$\end{document}, ε is a real number, a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a(t)$\end{document} is a real function, and n>4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n>4$\end{document}. We study the asymptotic properties of its local and global solutions as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon\rightarrow0$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Asymptotic behavior for a new higher-order nonlinear Schrödinger equation
    Zhang, Hongyi
    Zhang, Yufeng
    Feng, Binlu
    arXiv,
  • [42] Multi-breathers and higher-order rogue waves on the periodic background in a fourth-order integrable nonlinear Schrödinger equation
    Wei, Yun-Chun
    Zhang, Hai-Qiang
    Ma, Wen-Xiu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 537 (02)
  • [43] Ground state solution for a weighted fourth-order Schrödinger equation with exponential growth nonlinearity
    Rima Chetouane
    Brahim Dridi
    Rached Jaidane
    Lithuanian Mathematical Journal, 2023, 63 : 444 - 465
  • [44] Ground state solution for a weighted fourth-order Schrödinger equation with exponential growth nonlinearity
    Chetouane, Rima
    Dridi, Brahim
    Jaidane, Rached
    LITHUANIAN MATHEMATICAL JOURNAL, 2023, 63 (04) : 444 - 465
  • [45] Fourth-order finite difference scheme and efficient algorithm for nonlinear fractional Schrödinger equations
    Yan Chang
    Huanzhen Chen
    Advances in Difference Equations, 2020
  • [46] A fourth-order implicit-explicit scheme for the space fractional nonlinear Schrödinger equations
    A. Q. M. Khaliq
    X. Liang
    K. M. Furati
    Numerical Algorithms, 2017, 75 : 147 - 172
  • [47] Dynamical analysis of solitons, breathers and periodic rogue waves for the variable-coefficient fourth-order nonlinear Schrödinger equation
    Song, Ni
    Liu, Yating
    Wen, Zhuyan
    Ma, Wenxiu
    NONLINEAR DYNAMICS, 2024, 112 (24) : 22245 - 22256
  • [48] ALMOST SURE GLOBAL WELL-POSEDNESS FOR THE FOURTH-ORDER NONLINEAR SCHR(sic)DINGER EQUATION WITH LARGE INITIAL DATA
    Chen, Mingjuan
    Zhang, Shuai
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (05) : 2215 - 2233
  • [49] Exact solutions and optical soliton solutions for the nonlinear Schrödinger equation with fourth-order dispersion and cubic-quintic nonlinearity
    Elsayed M. E. Zayed
    Abdul-Ghani Al-Nowehy
    Ricerche di Matematica, 2017, 66 : 531 - 552
  • [50] Maximum norm error estimates of fourth-order compact difference scheme for the nonlinear Schrödinger equation involving a quintic term
    Hanqing Hu
    Hanzhang Hu
    Journal of Inequalities and Applications, 2018