The asymptotic property for nonlinear fourth-order Schrödinger equation with gain or loss

被引:0
|
作者
Cuihua Guo
机构
[1] Shanxi University,School of Mathematical Science
来源
关键词
nonlinear fourth-order Schrödinger equation with gain or loss; Fourier restriction norm method; Cauchy problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Cauchy problem of the nonlinear fourth-order Schrödinger equation with gain or loss: iut+△2u+λ|u|αu+iεa(t)|u|βu=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$iu_{t}+\triangle^{2}u+\lambda|u|^{\alpha}u +i\varepsilon a(t)|u|^{\beta}u=0$\end{document}, x∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in R^{n}$\end{document}, t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\in R$\end{document}, where 2≤α≤8n−4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\leq\alpha\leq\frac{8}{n-4}$\end{document} and 2≤β≤8n−4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\leq\beta\leq\frac{8}{n-4}$\end{document}, ε is a real number, a(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a(t)$\end{document} is a real function, and n>4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n>4$\end{document}. We study the asymptotic properties of its local and global solutions as ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon\rightarrow0$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] The asymptotic property for nonlinear fourth-order Schrodinger equation with gain or loss
    Guo, Cuihua
    BOUNDARY VALUE PROBLEMS, 2015,
  • [2] ON THE DECAY PROPERTY OF THE CUBIC FOURTH-ORDER SCHR?DINGER EQUATION
    Yu, Xueying
    Yue, Haitian
    Zhao, Zehua
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) : 2619 - 2630
  • [3] Factorization technique for the fourth-order nonlinear Schrödinger equation
    Nakao Hayashi
    Pavel I. Naumkin
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2343 - 2377
  • [4] Dynamics of solitons in the fourth-order nonlocal nonlinear Schrödinger equation
    T. A. Gadzhimuradov
    A. M. Agalarov
    R. Radha
    B. Tamil Arasan
    Nonlinear Dynamics, 2020, 99 : 1295 - 1300
  • [5] A note on the inhomogeneous fourth-order Schrödinger equation
    T. Saanouni
    R. Ghanmi
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [6] On Blowup Solutions to the Focusing Intercritical Nonlinear Fourth-Order Schrödinger Equation
    Van Duong Dinh
    Journal of Dynamics and Differential Equations, 2019, 31 : 1793 - 1823
  • [7] Scattering of solutions with group invariance for the fourth-order nonlinear Schrödinger equation
    Komada, Koichi
    Masaki, Satoshi
    NONLINEARITY, 2024, 37 (08)
  • [8] Global existence of small solutions for the fourth-order nonlinear Schrödinger equation
    Kazuki Aoki
    Nakao Hayashi
    Pavel I. Naumkin
    Nonlinear Differential Equations and Applications NoDEA, 2016, 23
  • [9] Soliton Solutions and Conservation Laws for an Inhomogeneous Fourth-Order Nonlinear Schrödinger Equation
    Pan Wang
    Feng-Hua Qi
    Jian-Rong Yang
    Computational Mathematics and Mathematical Physics, 2018, 58 : 1856 - 1864
  • [10] The global solution of anisotropic fourth-order Schrödinger equation
    Hailing Su
    Cuihua Guo
    Advances in Difference Equations, 2019