Conformal Mapping for the Efficient Solution of Poisson Problems with the Kansa-RBF Method

被引:0
|
作者
Xiao-Yan Liu
C. S. Chen
Andreas Karageorghis
机构
[1] Taiyuan University of Technology,School of Mathematics
[2] University of Southern Mississippi,Department of Mathematics
[3] University of Cyprus,Department of Mathematics and Statistics
来源
Journal of Scientific Computing | 2017年 / 71卷
关键词
Conformal mapping; Radial basis functions; Poisson equation; Fast Fourier transforms; Kansa method; Primary 65N35; Secondary 65E05; 30C30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the solution of Poisson Dirichlet problems in simply-connected irregular domains. These domains are conformally mapped onto the unit disk and the resulting Poisson Dirichlet problems are solved efficiently using a Kansa-radial basis function (RBF) method with a matrix decomposition algorithm (MDA). In a similar way, we treat Poisson Dirichlet and Poisson Dirichlet–Neumann problems in doubly-connected domains. These domains are mapped onto annular domains by a conformal mapping and the resulting Poisson Dirichlet and Poisson Dirichlet–Neumann problems are solved efficiently using a Kansa-RBF MDA. Several examples demonstrating the applicability of the proposed technique are presented.
引用
收藏
页码:1035 / 1061
页数:26
相关论文
共 50 条
  • [1] Conformal Mapping for the Efficient Solution of Poisson Problems with the Kansa-RBF Method
    Liu, Xiao-Yan
    Chen, C. S.
    Karageorghis, Andreas
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (03) : 1035 - 1061
  • [2] KANSA-RBF ALGORITHMS FOR ELLIPTIC PROBLEMS IN AXISYMMETRIC DOMAINS
    Karageorghis, Andreas
    Chen, C. S.
    Liu, Xiao-Yan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (01): : A435 - A470
  • [3] Kansa-RBF algorithms for elliptic problems in regular polygonal domains
    Andreas Karageorghis
    Malgorzata A. Jankowska
    C. S. Chen
    Numerical Algorithms, 2018, 79 : 399 - 421
  • [4] Kansa-RBF algorithms for elliptic problems in regular polygonal domains
    Karageorghis, Andreas
    Jankowska, Malgorzata A.
    Chen, C. S.
    NUMERICAL ALGORITHMS, 2018, 79 (02) : 399 - 421
  • [5] Improved Kansa RBF method for the solution of nonlinear boundary value problems
    Jankowska, Malgorzata A.
    Karageorghis, Andreas
    Chen, C. S.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 87 : 173 - 183
  • [6] Variable shape parameter Kansa RBF method for the solution of nonlinear boundary value problems
    Jankowska, Malgorzata A.
    Karageorghis, Andreas
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 103 : 32 - 40
  • [7] Conformal mapping for the efficient MFS solution of Dirichlet boundary value problems
    Andreas Karageorghis
    Yiorgos-Sokratis Smyrlis
    Computing, 2008, 83 : 1 - 24
  • [8] Conformal mapping for the efficient MFS solution of Dirichlet boundary value problems
    Karageorghis, Andreas
    Smyrlis, Yiorgos-Sokratis
    COMPUTING, 2008, 83 (01) : 1 - 24
  • [9] The Kansa RBF method with auxiliary boundary centres for fourth order boundary value problems
    Karageorghis, Andreas
    Tappoura, Demetriana
    Chen, C. S.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 181 : 581 - 597
  • [10] A Coupled RBF Method for the Solution of Elastostatic Problems
    Chen, Ying-Ting
    Cao, Yang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021