A B-spline finite element method for solving a class of nonlinear parabolic equations modeling epitaxial thin-film growth with variable coefficient

被引:0
作者
Dandan Qin
Jiawei Tan
Bo Liu
Wenzhu Huang
机构
[1] Aviation University of Air Force,Fundamental Department
[2] Jilin University,College of Mathematics
[3] Changchun University of Technology,School of Mathematics and Statistics
[4] Guizhou Medical University,School of Biology and Engineering
来源
Advances in Difference Equations | / 2020卷
关键词
B-spline; Finite element method; Nonlinear parabolic equation; Variable coefficient; Boundedness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose an efficient B-spline finite element method for a class of fourth order nonlinear differential equations with variable coefficient. For the temporal discretization, we choose the Crank–Nicolson scheme. Boundedness and error estimates are rigorously derived for both semi-discrete and fully discrete schemes. A numerical experiment confirms our theoretical analysis.
引用
收藏
相关论文
共 58 条
[1]  
King B.B.(2003)A fourth order parabolic equation modeling epitaxial thin film growth J. Math. Anal. Appl. 286 459-490
[2]  
Stein O.(1996)Some causes and a consequence of modeling roughening J. Cryst. Growth 163 8-21
[3]  
Winkler M.(2003)Upper bound on the coarsening rate for an epitaxial growth model Commun. Pure Appl. Math. 56 1549-1564
[4]  
Zangwill A.(2006)Regularity of solutions for a fourth order parabolic equation Bull. Belg. Math. Soc. Simon Stevin 13 527-535
[5]  
Kohn R.V.(2008)A fourth order parabolic equation with nonlinear principal part Nonlinear Anal. 68 393-401
[6]  
Yan X.(2007)Blow-up similarity solutions of the fourth-order unstable thin film equation Eur. J. Appl. Math. 18 195-231
[7]  
Liu C.(1970)Galerkin methods for parabolic equations SIAM J. Numer. Anal. 7 575-626
[8]  
Liu C.(1970)A combined mixed finite element and discontinuous Galerkin method for compressible miscible displacement SIAM J. Numer. Anal. 7 575-626
[9]  
Evans J.D.(2004)Mixed and hybrid finite element methods Natur. Sci. J. Xiangtan Univ. 26 119-126
[10]  
Galaktionov V.A.(2014)Finite element analysis of a nonlinear parabolic equation modeling epitaxial thin-film growth Bound. Value Probl. 2014 385-395