Tunneling for a Class of Difference Operators

被引:0
作者
Markus Klein
Elke Rosenberger
机构
[1] Universität Potsdam,Institut für Mathematik
来源
Annales Henri Poincaré | 2012年 / 13卷
关键词
Difference Operator; Interaction Matrix; Decay Estimate; Spectral Interval; Translation Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze a general class of difference operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\varepsilon = T_\varepsilon + V_\varepsilon}$$\end{document} on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\ell^2((\varepsilon \mathbb {Z})^d)}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V_\varepsilon}$$\end{document} is a multi-well potential and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varepsilon}$$\end{document} is a small parameter. We decouple the wells by introducing certain Dirichlet operators on regions containing only one potential well, and we shall treat the eigenvalue problem for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\varepsilon}$$\end{document} as a small perturbation of these comparison problems. We describe tunneling by a certain interaction matrix, similar to the analysis for the Schrödinger operator [see Helffer and Sjöstrand in Commun Partial Differ Equ 9:337–408, 1984], and estimate the remainder, which is exponentially small and roughly quadratic compared with the interaction matrix.
引用
收藏
页码:1231 / 1269
页数:38
相关论文
共 18 条
  • [1] Bovier A.(2001)Metastability in stochastic dynamics of disordered mean-field models Probab. Theory Relat. Fields 119 99-161
  • [2] Eckhoff M.(2002)Metastability and low lying spectra in reversible Markov chains Commun. Math. Phys. 228 219-255
  • [3] Gayrard V.(1998)Scattering theory for the perturbations of periodic Schrödinger operators J. Math Kyoto Univ. 38 595-634
  • [4] Klein M.(1984)Multiple wells in the semi-classical limit I Commun. Partial Differ. Equ. 9 337-408
  • [5] Bovier A.(2008)Agmon-type estimates for a class of difference operators Ann. Henri Poincaré 9 1177-1215
  • [6] Eckhoff M.(2011)Asymptotic eigenfunctions for a class of difference operators Asymptot. Anal. 73 1-36
  • [7] Gayrard V.(1983)Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions Ann Inst. H. Poincaré Phys. Theor. 38 295-308
  • [8] Klein M.(1984)Semiclassical analysis of low lying eigenvalues. II. Tunneling Ann. Math. 120 89-118
  • [9] Gérard C.(undefined)undefined undefined undefined undefined-undefined
  • [10] Nier F.(undefined)undefined undefined undefined undefined-undefined