The numerical solution of parabolic problems
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$u_t + \mathcal{A} u = 0$$\end{document} with a pseudo-differential operator
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{A}$$\end{document} by wavelet discretization in space and hp discontinuous Galerkin time stepping is analyzed. It is proved that an approximation for u(T) can be obtained in N points with accuracy
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{O}(N^{-p-1})$$\end{document} for any integer p ≥ 1 in work and memory which grows logarithmically-linear in N.
机构:
Amir Kabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, IranAmir Kabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran
Fakhar-Izadi, Farhad
Dehghan, Mehdi
论文数: 0引用数: 0
h-index: 0
机构:
Amir Kabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, IranAmir Kabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran