Berry–Esseen inequality;
Free probability;
Central limit theorem;
Speed of convergence;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
An analogue of the Berry–Esseen inequality is proved for the speed of convergence of free additive convolutions of bounded probability measures. The obtained rate of convergence is of the order n−1/2, the same as in the classical case. An example with binomial measures shows that this estimate cannot be improved without imposing further restrictions on convolved measures.
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Miao, Yu
Xue, Tianyu
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Xue, Tianyu
Du, Tian
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Ocean Univ, AIEN Inst, Shanghai, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
机构:
Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
Russian Acad Sci, Inst Informat Problems, Moscow, RussiaMoscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
Korolev, V. Yu.
Shevtsova, I. G.
论文数: 0引用数: 0
h-index: 0
机构:
Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
Russian Acad Sci, Inst Informat Problems, Moscow, RussiaMoscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow 119991, Russia
机构:
Univ Luxembourg, Unite Rech Math, Campus Kirchberg,6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, LuxembourgUniv Luxembourg, Unite Rech Math, Campus Kirchberg,6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
Dobler, Christian
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS,
2015,
12
(02):
: 863
-
902
机构:
Moscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow, RussiaMoscow MV Lomonosov State Univ, Fac Computat Math & Cybernet, Moscow, Russia