Berry–Esseen for Free Random Variables

被引:0
|
作者
Vladislav Kargin
机构
[1] Courant Institute of Mathematical Sciences,
来源
Journal of Theoretical Probability | 2007年 / 20卷
关键词
Berry–Esseen inequality; Free probability; Central limit theorem; Speed of convergence;
D O I
暂无
中图分类号
学科分类号
摘要
An analogue of the Berry–Esseen inequality is proved for the speed of convergence of free additive convolutions of bounded probability measures. The obtained rate of convergence is of the order n−1/2, the same as in the classical case. An example with binomial measures shows that this estimate cannot be improved without imposing further restrictions on convolved measures.
引用
收藏
页码:381 / 395
页数:14
相关论文
共 50 条
  • [21] Berry-Esseen-type inequalities for ultraspherical expansions
    Voit, M
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1999, 54 (1-2): : 103 - 129
  • [22] Berry-Esseen type estimates for nonconventional sums
    Hafouta, Yeor
    Kifer, Yuri
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (08) : 2430 - 2464
  • [23] Berry-Esseen bounds in the local limit theorems
    Bobkov, Sergey G.
    Goetze, Friedrich
    LITHUANIAN MATHEMATICAL JOURNAL, 2025, 65 (01) : 50 - 66
  • [24] Refinements of Berry–Esseen Inequalities in Terms of Lyapunov Coefficients
    Sergey G. Bobkov
    Journal of Fourier Analysis and Applications, 2023, 29
  • [25] A berry-esseen bound for U-statistics
    Gadasina L.V.
    Journal of Mathematical Sciences, 2005, 128 (1) : 2522 - 2537
  • [26] Berry-Esseen bounds for econometric time series
    Hormann, Siegfried
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 6 : 377 - 397
  • [27] The Berry-Esseen bound for student's statistic
    Bentkus, V
    Gotze, F
    ANNALS OF PROBABILITY, 1996, 24 (01) : 491 - 503
  • [28] BERRY-ESSEEN TYPE BOUNDS FOR THE LEFT RANDOM WALK ON GLd(R) UNDER POLYNOMIAL MOMENT CONDITIONS
    Cuny, C.
    Dedecker, J.
    Merlevede, F.
    Peligrad, M.
    ANNALS OF PROBABILITY, 2023, 51 (02) : 495 - 523
  • [29] NON-UNIFORM BERRY-ESSEEN-TYPE INEQUALITIES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT
    Wang, X. I. A. O. Q. I. A. N. G.
    Wu, J. I. U. J. I. A. N. G.
    Huang, C. H. U. N. M. A. O.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (01): : 325 - 339
  • [30] Berry–Esseen bounds in the entropic central limit theorem
    Sergey G. Bobkov
    Gennadiy P. Chistyakov
    Friedrich Götze
    Probability Theory and Related Fields, 2014, 159 : 435 - 478