Local Neighbor-Distinguishing Index of Graphs

被引:0
作者
Weifan Wang
Puning Jing
Jing Gu
Yiqiao Wang
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
[2] Zhejiang Normal University,Department of Mathematics
[3] Changzhou University,Department of Mathematics
[4] Beijing University of Chinese Medicine,School of Management
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Local neighbor-distinguishing index; Strict neighbor-distinguishing index; Edge-coloring; Planar graph; Factor; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a graph and ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is a proper edge-coloring of G. For a vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document}, let Cϕ(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(v)$$\end{document} denote the set of colors assigned to the edges incident with v. The graph G is local neighbor-distinguishing with respect to the coloring ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} if for any two adjacent vertices x and y of degree at least two, it holds that Cϕ(x)⊈Cϕ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(x)\not \subseteq C_{\phi }(y)$$\end{document} and Cϕ(y)⊈Cϕ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(y)\not \subseteq C_{\phi }(x)$$\end{document}. The local neighbor-distinguishing index, denoted χlnd′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)$$\end{document}, of G is defined as the minimum number of colors in a local neighbor-distinguishing edge-coloring of G. For n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, let Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_n$$\end{document} denote the graph obtained from the bipartite graph K2,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{2,n}$$\end{document} by inserting a 2-vertex into one edge. In this paper, we show the following results: (1) For any graph G, χlnd′(G)≤3Δ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le 3\Delta -1$$\end{document}; (2) suppose that G is a planar graph. Then χlnd′(G)≤⌈2.8Δ⌉+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \lceil 2.8\Delta \rceil +4$$\end{document}; and moreover χlnd′(G)≤2Δ+10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le 2\Delta +10$$\end{document} if G contains no 4-cycles; χlnd′(G)≤Δ+23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \Delta +23$$\end{document} if G is 3-connected; and χlnd′(G)≤Δ+6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \Delta +6$$\end{document} if G is Hamiltonian.
引用
收藏
相关论文
共 50 条
  • [41] The optimal general upper bound for the distinguishing index of infinite graphs
    Pilsniak, Monika
    Stawiski, Marcin
    JOURNAL OF GRAPH THEORY, 2020, 93 (04) : 463 - 469
  • [42] NEIGHBOR PRODUCT DISTINGUISHING TOTAL COLORINGS OF PLANAR GRAPHS WITH MAXIMUM DEGREE AT LEAST TEN
    Dong, Aijun
    Li, Tong
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (04) : 981 - 999
  • [43] Neighbor sum distinguishing total chromatic number of planar graphs without, 4-cycles
    Ge, Shan
    Li, Jianguo
    Xu, Changqing
    UTILITAS MATHEMATICA, 2017, 105 : 259 - 265
  • [44] NEIGHBOR SUM DISTINGUISHING TOTAL CHROMATIC NUMBER OF PLANAR GRAPHS WITHOUT 5-CYCLES
    Zhao, Xue
    Xu, Chang-Qing
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 243 - 253
  • [45] Neighbor sum distinguishing total choosability of planar graphs without intersecting 4-cycles
    Duan, Yuan-yuan
    Sun, Liang-ji
    Song, Wen-yao
    DISCRETE APPLIED MATHEMATICS, 2025, 361 : 473 - 479
  • [46] 2-Distance vertex-distinguishing index of subcubic graphs
    Victor Loumngam Kamga
    Weifan Wang
    Ying Wang
    Min Chen
    Journal of Combinatorial Optimization, 2018, 36 : 108 - 120
  • [47] Upper bounds on vertex distinguishing chromatic index of some Halin graphs
    Jun-qiao Zhu
    Yue-hua Bu
    Applied Mathematics-A Journal of Chinese Universities, 2012, 27 : 329 - 334
  • [48] Upper bounds on vertex distinguishing chromatic index of some Halin graphs
    Zhu Jun-qiao
    Bu Yue-hua
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (03) : 329 - 334
  • [49] Two-distance vertex-distinguishing index of sparse graphs
    He, Zhengyue
    Liang, Li
    Gao, Wei
    OPEN MATHEMATICS, 2023, 21 (01):
  • [50] 2-Distance vertex-distinguishing index of subcubic graphs
    Kamga, Victor Loumngam
    Wang, Weifan
    Wang, Ying
    Chen, Min
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) : 108 - 120