Local Neighbor-Distinguishing Index of Graphs

被引:0
作者
Weifan Wang
Puning Jing
Jing Gu
Yiqiao Wang
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
[2] Zhejiang Normal University,Department of Mathematics
[3] Changzhou University,Department of Mathematics
[4] Beijing University of Chinese Medicine,School of Management
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Local neighbor-distinguishing index; Strict neighbor-distinguishing index; Edge-coloring; Planar graph; Factor; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a graph and ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is a proper edge-coloring of G. For a vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document}, let Cϕ(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(v)$$\end{document} denote the set of colors assigned to the edges incident with v. The graph G is local neighbor-distinguishing with respect to the coloring ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} if for any two adjacent vertices x and y of degree at least two, it holds that Cϕ(x)⊈Cϕ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(x)\not \subseteq C_{\phi }(y)$$\end{document} and Cϕ(y)⊈Cϕ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(y)\not \subseteq C_{\phi }(x)$$\end{document}. The local neighbor-distinguishing index, denoted χlnd′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)$$\end{document}, of G is defined as the minimum number of colors in a local neighbor-distinguishing edge-coloring of G. For n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, let Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_n$$\end{document} denote the graph obtained from the bipartite graph K2,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{2,n}$$\end{document} by inserting a 2-vertex into one edge. In this paper, we show the following results: (1) For any graph G, χlnd′(G)≤3Δ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le 3\Delta -1$$\end{document}; (2) suppose that G is a planar graph. Then χlnd′(G)≤⌈2.8Δ⌉+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \lceil 2.8\Delta \rceil +4$$\end{document}; and moreover χlnd′(G)≤2Δ+10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le 2\Delta +10$$\end{document} if G contains no 4-cycles; χlnd′(G)≤Δ+23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \Delta +23$$\end{document} if G is 3-connected; and χlnd′(G)≤Δ+6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \Delta +6$$\end{document} if G is Hamiltonian.
引用
收藏
相关论文
共 50 条
  • [31] Neighbor sum distinguishing total colorings of planar graphs with maximum degree Δ
    Cheng, Xiaohan
    Huang, Danjun
    Wang, Guanghui
    Wu, Jianliang
    DISCRETE APPLIED MATHEMATICS, 2015, 190 : 34 - 41
  • [32] Neighbor sum distinguishing total colorings of planar graphs without short cycles
    Ma, Qiaoling
    Wang, Jihui
    Zhao, Haixia
    UTILITAS MATHEMATICA, 2015, 98 : 349 - 359
  • [33] Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles
    Wang, Jihui
    Cai, Jiansheng
    Qiu, Baojian
    THEORETICAL COMPUTER SCIENCE, 2017, 661 : 1 - 7
  • [34] Neighbor sum distinguishing total colorings of planar graphs with girth at least 5
    Li, Jianguo
    Ge, Shan
    Xu, Changqing
    UTILITAS MATHEMATICA, 2017, 104 : 115 - 121
  • [35] Neighbor sum distinguishing total coloring of planar graphs without 4-cycles
    Song, Hongjie
    Xu, Changqing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (04) : 1147 - 1158
  • [36] Neighbor sum distinguishing total coloring of planar graphs without 4-cycles
    Hongjie Song
    Changqing Xu
    Journal of Combinatorial Optimization, 2017, 34 : 1147 - 1158
  • [37] Neighbor sum distinguishing total coloring of planar graphs without 5-cycles
    Ge, Shan
    Li, Jianguo
    Xu, Changqing
    THEORETICAL COMPUTER SCIENCE, 2017, 689 : 169 - 175
  • [38] Neighbor Sum Distinguishing Total Choosability of Planar Graphs without 5-cycles
    Qiu, Baojian
    Wang, Jihui
    Liu, Yan
    ARS COMBINATORIA, 2020, 152 : 141 - 149
  • [39] Neighbor sum distinguishing total chromatic number of planar graphs with maximum degree 10
    Yang, Donglei
    Sun, Lin
    Yu, Xiaowei
    Wu, Jianliang
    Zhou, Shan
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 314 : 456 - 468
  • [40] Neighbor sum distinguishing total choosability of planar graphs without 4-cycles
    Wang, Jihui
    Cai, Jiansheng
    Ma, Qiaoling
    DISCRETE APPLIED MATHEMATICS, 2016, 206 : 215 - 219