Local Neighbor-Distinguishing Index of Graphs

被引:0
|
作者
Weifan Wang
Puning Jing
Jing Gu
Yiqiao Wang
机构
[1] Shandong University of Technology,School of Mathematics and Statistics
[2] Zhejiang Normal University,Department of Mathematics
[3] Changzhou University,Department of Mathematics
[4] Beijing University of Chinese Medicine,School of Management
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2023年 / 46卷
关键词
Local neighbor-distinguishing index; Strict neighbor-distinguishing index; Edge-coloring; Planar graph; Factor; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that G is a graph and ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} is a proper edge-coloring of G. For a vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document}, let Cϕ(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(v)$$\end{document} denote the set of colors assigned to the edges incident with v. The graph G is local neighbor-distinguishing with respect to the coloring ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} if for any two adjacent vertices x and y of degree at least two, it holds that Cϕ(x)⊈Cϕ(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(x)\not \subseteq C_{\phi }(y)$$\end{document} and Cϕ(y)⊈Cϕ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\phi }(y)\not \subseteq C_{\phi }(x)$$\end{document}. The local neighbor-distinguishing index, denoted χlnd′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)$$\end{document}, of G is defined as the minimum number of colors in a local neighbor-distinguishing edge-coloring of G. For n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, let Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_n$$\end{document} denote the graph obtained from the bipartite graph K2,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{2,n}$$\end{document} by inserting a 2-vertex into one edge. In this paper, we show the following results: (1) For any graph G, χlnd′(G)≤3Δ-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le 3\Delta -1$$\end{document}; (2) suppose that G is a planar graph. Then χlnd′(G)≤⌈2.8Δ⌉+4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \lceil 2.8\Delta \rceil +4$$\end{document}; and moreover χlnd′(G)≤2Δ+10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le 2\Delta +10$$\end{document} if G contains no 4-cycles; χlnd′(G)≤Δ+23\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \Delta +23$$\end{document} if G is 3-connected; and χlnd′(G)≤Δ+6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi '_\textrm{lnd}(G)\le \Delta +6$$\end{document} if G is Hamiltonian.
引用
收藏
相关论文
共 50 条
  • [21] Neighbor sum distinguishing total choosability of planar graphs
    Cunquan Qu
    Guanghui Wang
    Guiying Yan
    Xiaowei Yu
    Journal of Combinatorial Optimization, 2016, 32 : 906 - 916
  • [22] Neighbor sum distinguishing total colorings of planar graphs
    Hualong Li
    Laihao Ding
    Bingqiang Liu
    Guanghui Wang
    Journal of Combinatorial Optimization, 2015, 30 : 675 - 688
  • [23] Neighbor sum distinguishing total colorings of planar graphs
    Li, Hualong
    Ding, Laihao
    Liu, Bingqiang
    Wang, Guanghui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (03) : 675 - 688
  • [24] Neighbor sum distinguishing total choosability of planar graphs
    Qu, Cunquan
    Wang, Guanghui
    Yan, Guiying
    Yu, Xiaowei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (03) : 906 - 916
  • [25] Neighbor sum distinguishing edge coloring of subcubic graphs
    Xiao Wei Yu
    Guang Hui Wang
    Jian Liang Wu
    Gui Ying Yan
    Acta Mathematica Sinica, English Series, 2017, 33 : 252 - 262
  • [26] Neighbor Sum Distinguishing Edge Coloring of Subcubic Graphs
    Xiao Wei YU
    Guang Hui WANG
    Jian Liang WU
    Gui Ying YAN
    Acta Mathematica Sinica,English Series, 2017, (02) : 252 - 262
  • [27] A note on the neighbor sum distinguishing total coloring of planar graphs
    Song, Hong Jie
    Pan, Wen Hua
    Gong, Xiang Nan
    Xu, Chang Qing
    THEORETICAL COMPUTER SCIENCE, 2016, 640 : 125 - 129
  • [28] Neighbor sum distinguishing total chromatic number of planar graphs
    Xu, Changqing
    Li, Jianguo
    Ge, Shan
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 : 189 - 196
  • [29] Neighbor full sum distinguishing total coloring of planar graphs
    Yue, Zhongzheng
    Wen, Fei
    Li, Zhijun
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [30] Improved bounds for neighbor sum (set) distinguishing choosability of planar graphs
    Cheng, Xiaohan
    Ding, Laihao
    Wang, Guanghui
    Wu, Jianliang
    DISCRETE MATHEMATICS, 2020, 343 (07)