Cacti with maximal general sum-connectivity index

被引:0
作者
Shahid Zaman
机构
[1] University of Sialkot,Department of Mathematics
[2] Central China Normal University,Faculty of Mathematics and Statistics
来源
Journal of Applied Mathematics and Computing | 2021年 / 65卷
关键词
General sum-connectivity index; Cactus; Pendent vertex; Perfect matching; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let V(G) and E(G) be, respectively, the vertex set and edge set of a graph G. The general sum-connectivity index of a graph G is denoted by χα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)$$\end{document} and is defined as ∑uv∈E(G)(du+dv)α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum \limits _{uv\in E(G)}(d_u+d_v)^\alpha $$\end{document}, where uv is an edge that connect the vertices u,v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u,v\in V(G)$$\end{document}, du\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_u$$\end{document} is the degree of a vertex u and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is any non-zero real number. A cactus is a graph in which any two cycles have at most one common vertex. Let Cn,t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}_{n,t}$$\end{document} denote the class of all cacti with order n and t pendant vertices. In this paper, a maximum general sum-connectivity index (χα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _\alpha (G)$$\end{document}, α>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >1$$\end{document}) of a cacti graph with order n and t pendant vertices is considered. We determine the maximum general sum-connectivity index of n-vertex cacti graph. Based on our obtained results, we characterize the cactus with a perfect matching having the maximum general sum-connectivity index.
引用
收藏
页码:147 / 160
页数:13
相关论文
共 69 条
[1]  
Li Q(2020)Study on the normalized Laplacian of a penta-graphene with applications Int J Quantum Chem 97 6609-6615
[2]  
Zaman S(2020)Relation between the inertia indices of a complex unit gain graph and those of its underlying graph Linear and Multilinear Algebra 59 127-156
[3]  
Sun W(1975)On characterization of molecular branching J. Am. Chem. Soc. 302 111-121
[4]  
Alam J(2008)A survey on the Randič index MATCH Commun. Math. Comput. Chem. 181 160-166
[5]  
Zaman S(2017)The general Randić index of trees with given number of pendent vertices Appl. Math. Comput. 273 897-911
[6]  
He X(2015)Sandwiching the (generalized) Randić index Discrete Appl. Math. 265 1019-1025
[7]  
Randić M(2016)The general connectivity indices of fluoranthene-type benzenoid systems Appl. Math. Comput. 50 225-233
[8]  
Li X(2015)Note on two generalizations of the Randić index Appl. Math. Comput. 46 1252-1270
[9]  
Shi Y(1998)Graphs of extremal weights Ars Combin. 47 210-218
[10]  
Cui Q(2009)On a novel connectivity index J. Math. Chem. 24 402-405