Global boundedness and large time behavior in a signal-dependent motility system with nonlinear signal consumption

被引:0
作者
Ya Tian
Guoqing Xie
机构
[1] Chongqing University of Posts and Telecommunications,School of Science
来源
Zeitschrift für angewandte Mathematik und Physik | 2024年 / 75卷
关键词
Global existence; Boundedness; Signal-dependent motilities; Large time behavior; 35A01; 35B65; 35K65; 35Q92; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the following system with nonlinear signal consumption ut=Δγvu+ru-μuα,x∈Ω,t>0,vt=Δv-uβv,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{llll} {u_t} = \Delta \left( {\gamma \left( v \right) u} \right) + ru - \mu {u^\alpha },\quad &{}x\in \Omega ,\quad &{}t>0,\\ {v_t} = \Delta v - {u^\beta }v,\quad &{}x\in \Omega ,\quad &{}t>0,\\ \end{array} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω∈Rnn≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \in {\mathbb {R}^n} \left( {n \ge 2} \right) $$\end{document}. It shown that whenever r>0,μ>0,α>2,β>0andαβ>n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r> 0,\mu> 0,\alpha> 2, \beta> 0 \text { and } \frac{\alpha }{\beta } > \frac{{n + 2}}{2}$$\end{document}, then the original system will produce a global classical solution and the solution converges to equilibrium rμ1α-1,0ast→∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( {{{\left( {\frac{r}{\mu }} \right) }^{\frac{1}{{\alpha - 1}}}},0} \right) \quad \text { as } t \rightarrow \infty . \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条
[41]   Global in Time and Bounded Solutions to a Parabolic-Elliptic Chemotaxis System with Nonlinear Diffusion and Signal-Dependent Sensitivity [J].
Viglialoro, Giuseppe .
APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (02) :979-1004
[42]   Boundedness of classical solutions to a chemotaxis consumption system with signal dependent motility and logistic source [J].
Baghaei, Khadij Eh .
COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) :1641-1652
[43]   THE KELLER-SEGEL SYSTEM WITH LOGISTIC GROWTH AND SIGNAL-DEPENDENT MOTILITY [J].
Jin, Hai-Yang ;
Wang, Zhi-An .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06) :3023-3041
[44]   On the global existence of solutions to a chemotaxis system with signal-dependent motility, indirect signal production and generalized logistic source [J].
Liu, Changfeng ;
Guo, Shangjiang .
APPLIED MATHEMATICS LETTERS, 2024, 157
[45]   Global dynamics of a two-species chemotaxis-consumption system with signal-dependent motilities [J].
Qiu, Shuyan ;
Mu, Chunlai ;
Tu, Xinyu .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 57 (57)
[46]   Global existence for a class of chemotaxis systems with signal-dependent motility, indirect signal production and generalized logistic source [J].
Lv, Wenbin ;
Wang, Qingyuan .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (02)
[47]   Global boundedness and asymptotic stabilization in a chemotaxis system with density-suppressed motility and nonlinear signal production [J].
Zhao, Quanyong ;
Li, Zhongping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (02)
[48]   Boundedness and asymptotic behavior in a fully parabolic chemotaxis-growth system with signal-dependent sensitivity [J].
Zheng, Pan ;
Mu, Chunlai ;
Wang, Liangchen ;
Li, Ling .
JOURNAL OF EVOLUTION EQUATIONS, 2017, 17 (03) :909-929
[49]   Boundedness and asymptotic behavior in a fully parabolic chemotaxis-growth system with signal-dependent sensitivity [J].
Pan Zheng ;
Chunlai Mu ;
Liangchen Wang ;
Ling Li .
Journal of Evolution Equations, 2017, 17 :909-929
[50]   Global existence of solutions in a chemotaxis consumption system with signal dependent motility and logistic sources [J].
Le, Minh .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 32 (04)