Global boundedness and large time behavior in a signal-dependent motility system with nonlinear signal consumption

被引:0
作者
Ya Tian
Guoqing Xie
机构
[1] Chongqing University of Posts and Telecommunications,School of Science
来源
Zeitschrift für angewandte Mathematik und Physik | 2024年 / 75卷
关键词
Global existence; Boundedness; Signal-dependent motilities; Large time behavior; 35A01; 35B65; 35K65; 35Q92; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the following system with nonlinear signal consumption ut=Δγvu+ru-μuα,x∈Ω,t>0,vt=Δv-uβv,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{llll} {u_t} = \Delta \left( {\gamma \left( v \right) u} \right) + ru - \mu {u^\alpha },\quad &{}x\in \Omega ,\quad &{}t>0,\\ {v_t} = \Delta v - {u^\beta }v,\quad &{}x\in \Omega ,\quad &{}t>0,\\ \end{array} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω∈Rnn≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \in {\mathbb {R}^n} \left( {n \ge 2} \right) $$\end{document}. It shown that whenever r>0,μ>0,α>2,β>0andαβ>n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r> 0,\mu> 0,\alpha> 2, \beta> 0 \text { and } \frac{\alpha }{\beta } > \frac{{n + 2}}{2}$$\end{document}, then the original system will produce a global classical solution and the solution converges to equilibrium rμ1α-1,0ast→∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( {{{\left( {\frac{r}{\mu }} \right) }^{\frac{1}{{\alpha - 1}}}},0} \right) \quad \text { as } t \rightarrow \infty . \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条
[31]   Boundedness and stabilization in a two-species chemotaxis-competition system with signal-dependent sensitivities and indirect signal consumption [J].
Jiao, Zhan ;
Jadlovska, Irena ;
Li, Tongxing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
[32]   Boundedness in a two-dimensional chemotaxis system with signal-dependent motility and logistic source [J].
Hu, Yanmei ;
Du, Wanjuan .
BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
[33]   Global solutions to a chemotaxis-growth system with signal-dependent motilities and signal consumption [J].
Li, Yan ;
Lu, Shuying .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (01)
[34]   Global existence, boundedness and large time behavior for a chemotaxis model with singular sensitivity and nonlinear signal production [J].
Zhang, Jing ;
Mu, Chunlai ;
Tu, Xinyu .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2025, 32 (03)
[35]   Global existence of a quasilinear chemotaxis model with signal-dependent motility and indirect signal production mechanism [J].
Ren, Guoqiang .
JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (09)
[36]   Global existence for a class of chemotaxis-consumption systems with signal-dependent motility and generalized logistic source [J].
Lv, Wenbin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 56
[37]   Global in Time and Bounded Solutions to a Parabolic–Elliptic Chemotaxis System with Nonlinear Diffusion and Signal-Dependent Sensitivity [J].
Giuseppe Viglialoro .
Applied Mathematics & Optimization, 2021, 83 :979-1004
[38]   A chemotaxis system with signal-dependent motility, indirect signal production and generalized logistic source: Global existence and asymptotic stabilization [J].
Lv, Wenbin ;
Wang, Qiong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (02)
[39]   Global existence and boundedness in a Keller-Segel-(Navier-)Stokes system with signal-dependent sensitivity [J].
Liu, Ji ;
Wang, Yifu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (01) :499-528
[40]   CRITICAL MASS ON THE KELLER-SEGEL SYSTEM WITH SIGNAL-DEPENDENT MOTILITY [J].
Jin, Hai-Yang ;
Wang, Zhi-An .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (11) :4855-4873