Global boundedness and large time behavior in a signal-dependent motility system with nonlinear signal consumption

被引:0
作者
Ya Tian
Guoqing Xie
机构
[1] Chongqing University of Posts and Telecommunications,School of Science
来源
Zeitschrift für angewandte Mathematik und Physik | 2024年 / 75卷
关键词
Global existence; Boundedness; Signal-dependent motilities; Large time behavior; 35A01; 35B65; 35K65; 35Q92; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the following system with nonlinear signal consumption ut=Δγvu+ru-μuα,x∈Ω,t>0,vt=Δv-uβv,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{llll} {u_t} = \Delta \left( {\gamma \left( v \right) u} \right) + ru - \mu {u^\alpha },\quad &{}x\in \Omega ,\quad &{}t>0,\\ {v_t} = \Delta v - {u^\beta }v,\quad &{}x\in \Omega ,\quad &{}t>0,\\ \end{array} \right. \end{aligned}$$\end{document}under homogeneous Neumann boundary conditions in a smooth bounded domain Ω∈Rnn≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \in {\mathbb {R}^n} \left( {n \ge 2} \right) $$\end{document}. It shown that whenever r>0,μ>0,α>2,β>0andαβ>n+22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r> 0,\mu> 0,\alpha> 2, \beta> 0 \text { and } \frac{\alpha }{\beta } > \frac{{n + 2}}{2}$$\end{document}, then the original system will produce a global classical solution and the solution converges to equilibrium rμ1α-1,0ast→∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( {{{\left( {\frac{r}{\mu }} \right) }^{\frac{1}{{\alpha - 1}}}},0} \right) \quad \text { as } t \rightarrow \infty . \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条
[21]   Global solutions to a chemotaxis system with signal-dependent motility and signal consumption and logistic source [J].
Huang, Rui ;
Wang, Liangchen .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (02)
[22]   Global dynamics for a chemotaxis consumption system with signal-dependent motility and logistic source [J].
Wang, Liangchen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 348 :191-222
[23]   Global boundedness and asymptotic behavior of a two-species chemotaxis system with signal-dependent motilities and indirect signal consumption [J].
Qiu, Shuyan ;
Zhang, Yumiao ;
Tu, Xinyu .
JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (04)
[24]   GLOBAL BOUNDEDNESS IN A QUASILINEAR CHEMOTAXIS-CONSUMPTION SYSTEM WITH SIGNAL-DEPENDENT MOTILITY AND SUPER-QUADRATIC DAMPING [J].
Xu, Chi .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (05) :2570-2588
[25]   GLOBAL BOUNDEDNESS AND LARGE TIME BEHAVIOR OF A TWO-SPECIES COMPETITION SYSTEM WITH INDIRECT SIGNAL CONSUMPTION [J].
Tian, Ya ;
Xie, Guoqing .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (06) :2727-2748
[26]   BOUNDEDNESS AND LARGE TIME BEHAVIOR IN A TWO-DIMENSIONAL KELLER-SEGEL-NAVIER-STOKES SYSTEM WITH SIGNAL-DEPENDENT DIFFUSION AND SENSITIVITY [J].
Jin, Hai-Yang .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (07) :3595-3616
[27]   Global existence and boundedness in a chemotaxis-haptotaxis system with signal-dependent sensitivity [J].
Mizukami, Masaaki ;
Otsuka, Hirohiko ;
Yokota, Tomomi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (01) :354-369
[28]   Global boundedness and large time behavior of a chemotaxis system with indirect signal absorption [J].
Liu, Yong ;
Li, Zhongping ;
Huang, Jinfeng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (09) :6365-6399
[29]   GLOBAL BOUNDEDNESS IN AN INDIRECT CHEMOTAXIS-CONSUMPTION MODEL WITH SIGNAL-DEPENDENT DEGENERATE DIFFUSION [J].
Wu, Chun .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 2025 (01)
[30]   Global existence and uniform boundedness in a fully parabolic Keller-Segel system with non-monotonic signal-dependent motility [J].
Xiao, Yamin ;
Jiang, Jie .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 354 :403-429