Composition Operators on Sobolev Spaces and Neumann Eigenvalues

被引:0
作者
V. Gol’dshtein
A. Ukhlov
机构
[1] Ben-Gurion University of the Negev,
来源
Complex Analysis and Operator Theory | 2019年 / 13卷
关键词
Sobolev spaces; Neumann eigenvalues; Quasiconformal mappings; 35P15; 46E35; 30C65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we discuss applications of the geometric theory of composition operators on Sobolev spaces to the spectral theory of non-linear elliptic operators. Lower estimates of the first non-trivial Neumann eigenvalues of the p-Laplace operator in cusp domains Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb R^n$$\end{document}, n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, are given.
引用
收藏
页码:2781 / 2798
页数:17
相关论文
共 50 条
[21]   Sharp bounds for composition with quasiconformal mappings in Sobolev spaces [J].
Oliva, Marcos ;
Prats, Marti .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (02) :1026-1044
[22]   Integral operators in Sobolev spaces on domains with boundary [J].
Witte, J .
MATHEMATISCHE NACHRICHTEN, 1999, 200 :151-163
[23]   Approximation results in Sobolev and fractional Sobolev spaces by sampling Kantorovich operators [J].
Cantarini, Marco ;
Costarelli, Danilo ;
Vinti, Gianluca .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) :2493-2521
[24]   Approximation results in Sobolev and fractional Sobolev spaces by sampling Kantorovich operators [J].
Marco Cantarini ;
Danilo Costarelli ;
Gianluca Vinti .
Fractional Calculus and Applied Analysis, 2023, 26 :2493-2521
[25]   ON THE CONTINUITY OF DISCRETE MAXIMAL OPERATORS IN SOBOLEV SPACES [J].
Luiro, Hannes ;
Nuutinen, Juho .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) :175-185
[28]   The upper bound of the harmonic mean of the Neumann eigenvalues in curved spaces [J].
Chen, Hang .
JOURNAL OF GEOMETRY AND PHYSICS, 2024, 200
[29]   NEMYTZKIJ OPERATORS ON SOBOLEV SPACES WITH POWER WEIGHTS: I [J].
Drihem D. .
Journal of Mathematical Sciences, 2022, 266 (3) :395-406
[30]   On the eigenvalues of the Sturm-Liouville operator with potentials from Sobolev spaces [J].
Savchuk, A. M. ;
Shkalikov, A. A. .
MATHEMATICAL NOTES, 2006, 80 (5-6) :814-832