On a problem of Bourgain concerning the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-norm of exponential sums

被引:0
|
作者
Christoph Aistleitner
机构
[1] University of New South Wales,Department of Applied Mathematics, School of Mathematics and Statistics
关键词
norm; Exponential sums; Trigonometric polynomials; 42A05; 33B10;
D O I
10.1007/s00209-013-1155-8
中图分类号
学科分类号
摘要
Bourgain posed the problem of calculating \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Sigma = \sup _{n \ge 1} ~\sup _{k_1 < \cdots < k_n} \frac{1}{\sqrt{n}} \left\| \sum _{j=1}^n e^{2 \pi i k_j \theta } \right\| _{L^1([0,1])}. \end{aligned}$$\end{document}It is clear that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \le 1$$\end{document}; beyond that, determining whether \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma < 1$$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma =1$$\end{document} would have some interesting implications, for example concerning the problem whether all rank one transformations have singular maximal spectral type. In the present paper we prove \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \ge \sqrt{\pi }/2 \approx 0.886$$\end{document}, by this means improving a result of Karatsuba. For the proof we use a quantitative two-dimensional version of the central limit theorem for lacunary trigonometric series, which in its original form is due to Salem and Zygmund.
引用
收藏
页码:681 / 688
页数:7
相关论文
共 50 条