Strongly automorphic mappings and Julia sets of uniformly quasiregular mappings

被引:0
作者
Alastair Fletcher
Douglas Macclure
机构
[1] Northern Illinois University,Department of Mathematical Sciences
来源
Journal d'Analyse Mathématique | 2020年 / 141卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A theorem of Ritt states the Poincaré linearizer L of a rational map f at a repelling fixed point is periodic only if f is conjugate to a power of z, a Chebyshev polynomial or a Lattes map. The converse, except for the case where the fixed pointis an endpoint of the interval Julia set for a Chebyshev polynomial, is also true. In this paper, we prove the analogous statement in the setting of strongly automorphic quasiregular mappings and uniformly quasiregular mappings in ℝn. Along the way, we characterize the possible automorphy groups that can arise via crystallographic orbifolds and a use of the Poincaré conjecture. We further give a classification of the behaviour of uniformly quasiregular mappings on their Julia set when the Julia set is a quasisphere, quasidisk or all of ℝn and the Julia set coincides with the set of conical points. Finally, we prove an analogue of the Denjoy-Wolff Theorem for uniformly quasiregular mappings in B3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{B}^3}$$\end{document}, the first such generalization of the Denjoy—Wolff Theorem where there is no guarantee of non-expansiveness with respect to a metric.
引用
收藏
页码:483 / 520
页数:37
相关论文
共 50 条
  • [31] QUASIREGULAR MAPPINGS TO GENERALIZED MANIFOLDS
    Onninen, Jani
    Rajala, Kai
    JOURNAL D ANALYSE MATHEMATIQUE, 2009, 109 : 33 - 79
  • [32] The oscillation of harmonic and quasiregular mappings
    J.M. Anderson
    A. Hinkkanen
    Mathematische Zeitschrift, 2002, 239 : 703 - 713
  • [33] On angular limits of quasiregular mappings
    Huang, Jie
    Rasila, Antti
    Vuorinen, Matti
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 539 (01)
  • [34] Normal Families and Quasiregular Mappings
    Fletcher, Alastair N.
    Nicks, Daniel A.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2024, 67 (01) : 79 - 112
  • [35] Smooth quasiregular mappings with branching
    Bonk, X
    Heinonen, J
    PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 100, 2004, 100 (1): : 153 - 170
  • [36] Quasiregular Mappings, Curvature & Dynamics
    Martin, Gaven J.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1433 - 1449
  • [37] On the zeros and growth of quasiregular mappings
    Järvi, P
    JOURNAL D ANALYSE MATHEMATIQUE, 2000, 82 (1): : 347 - 362
  • [38] ESTIMATION OF DILATATIONS FOR MAPPINGS MORE GENERAL THAN QUASIREGULAR MAPPINGS
    Salimov, R. R.
    Sevost'yanov, E. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 62 (11) : 1775 - 1782
  • [39] AUTOMORPHIC MAPPINGS IN RN
    MARTIO, O
    SREBRO, U
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (04) : 692 - 694
  • [40] Estimation of dilatations for mappings more general than quasiregular mappings
    R. R. Salimov
    E. A. Sevost’yanov
    Ukrainian Mathematical Journal, 2011, 62 : 1775 - 1782