Strongly automorphic mappings and Julia sets of uniformly quasiregular mappings

被引:0
作者
Alastair Fletcher
Douglas Macclure
机构
[1] Northern Illinois University,Department of Mathematical Sciences
来源
Journal d'Analyse Mathématique | 2020年 / 141卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A theorem of Ritt states the Poincaré linearizer L of a rational map f at a repelling fixed point is periodic only if f is conjugate to a power of z, a Chebyshev polynomial or a Lattes map. The converse, except for the case where the fixed pointis an endpoint of the interval Julia set for a Chebyshev polynomial, is also true. In this paper, we prove the analogous statement in the setting of strongly automorphic quasiregular mappings and uniformly quasiregular mappings in ℝn. Along the way, we characterize the possible automorphy groups that can arise via crystallographic orbifolds and a use of the Poincaré conjecture. We further give a classification of the behaviour of uniformly quasiregular mappings on their Julia set when the Julia set is a quasisphere, quasidisk or all of ℝn and the Julia set coincides with the set of conical points. Finally, we prove an analogue of the Denjoy-Wolff Theorem for uniformly quasiregular mappings in B3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{B}^3}$$\end{document}, the first such generalization of the Denjoy—Wolff Theorem where there is no guarantee of non-expansiveness with respect to a metric.
引用
收藏
页码:483 / 520
页数:37
相关论文
共 50 条
  • [1] STRONGLY AUTOMORPHIC MAPPINGS AND JULIA SETS OF UNIFORMLY QUASIREGULAR MAPPINGS
    Fletcher, Alastair
    Macclure, Douglas
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 141 (02): : 483 - 520
  • [2] Julia sets of uniformly quasiregular mappings are uniformly perfect
    Fletcher, Alastair N.
    Nicks, Daniel A.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2011, 151 : 541 - 550
  • [3] Uniformly perfect sets and quasiregular mappings
    Jarvi, P
    Vuorinen, M
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 515 - 529
  • [4] UNIFORMLY QUASIREGULAR MAPS WITH TOROIDAL JULIA SETS
    Kangaslampi, Riikka
    Peltonen, Kirsi
    Wu, Jang-Mei
    CONFORMAL GEOMETRY AND DYNAMICS, 2012, 16 : 81 - 88
  • [5] Uniform cohomological expansion of uniformly quasiregular mappings
    Kangasniemi, Ilmari
    Pankka, Pekka
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 118 (03) : 701 - 728
  • [6] On Strongly Uniformly Paracompact Spaces and Mappings
    Zhanakunova, Meerim
    Kanetov, Bekbolot
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020), 2021, 2325
  • [7] The generalized Lichnerowicz problem: Uniformly quasiregular mappings and space forms
    Martin, G
    Mayer, V
    Peltonen, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (07) : 2091 - 2097
  • [8] Nonremovable sets for Holder continuous quasiregular mappings in the plane
    Clop, Albert
    MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (01) : 195 - 208
  • [9] ON INJECTIVITY OF QUASIREGULAR MAPPINGS
    Iwaniec, Tadeusz
    Kovalev, Leonid V.
    Onninen, Jani
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (05) : 1783 - 1791
  • [10] Quasiregular mappings and cohomology
    Bonk, M
    Heinonen, J
    ACTA MATHEMATICA, 2001, 186 (02) : 219 - 238