Nonlinear design analysis of centrifugal pendulum vibration absorbers: an intrinsic geometry-based framework

被引:0
作者
Marco Cirelli
Mattia Cera
Ettore Pennestrì
Pier Paolo Valentini
机构
[1] University of Rome Tor Vergata,Department of Enterprise Engineering
[2] University Niccolò Cusano,Department of Mechanical Engineering
来源
Nonlinear Dynamics | 2020年 / 102卷
关键词
Centrifugal pendulum vibration absorber; Nonlinear dynamics; Intrinsic geometry; Higher-path curvature; Perturbation methods; Tautochronic CPVA; Multibody dynamics simulation;
D O I
暂无
中图分类号
学科分类号
摘要
The centrifugal pendulum vibration absorber (CPVA) is a device whose purpose is the reduction in torsional vibrations in rotating and reciprocating machinery. Over the last decades, CPVA nonlinear behavior has been thoroughly investigated. In particular, the performance and the local stability of cycloidal, epicycloidal and tautochronic CPVAs have been extensively analyzed. In this paper, on the basis of intrinsic geometry and higher-path curvature theory, a novel and unified modeling approach for the design of a parametric family of CPVAs, herein named λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-CPVA, is proposed. In the first part, the intrinsic geometry framework is applied to derive CPVA equations of motions in terms of higher-order curvature ratios of the damper path. Then, the same approach is extended to describe the curvature kinematics of the rollers of a parallel bifilar pendulum. In the second part, a new family of parametric curves in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}, denoted as λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-curves, is introduced. This allows a fine adjustment of CPVA nonlinear dynamics to the design requirements. In the third part, the numerical comparison of the performance and the stability limits between the cycloidal, tautochronic pendula and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-CPVA are presented. Finally, the λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-CPVA analytical model is more accurately simulated with a multibody dynamics approach. The design analysis framework herein proposed increases the dimension of the solution space and opens new possibilities of tailoring the CPVA performance to the specific application.
引用
收藏
页码:1297 / 1318
页数:21
相关论文
共 37 条
[1]   Nonlinear design analysis of centrifugal pendulum vibration absorbers: an intrinsic geometry-based framework [J].
Cirelli, Marco ;
Cera, Mattia ;
Pennestri, Ettore ;
Valentini, Pier Paolo .
NONLINEAR DYNAMICS, 2020, 102 (03) :1297-1318
[2]   Design analysis of torsichrone centrifugal pendulum vibration absorbers [J].
Mattia Cera ;
Marco Cirelli ;
Ettore Pennestrì ;
Pier Paolo Valentini .
Nonlinear Dynamics, 2021, 104 :1023-1041
[3]   Design analysis of torsichrone centrifugal pendulum vibration absorbers [J].
Cera, Mattia ;
Cirelli, Marco ;
Pennestri, Ettore ;
Valentini, Pier Paolo .
NONLINEAR DYNAMICS, 2021, 104 (02) :1023-1041
[4]   Subharmonic centrifugal pendulum vibration absorbers allowing a rotational mobility [J].
Mahe, V ;
Renault, A. ;
Grolet, A. ;
Mahe, H. ;
Thomas, O. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 177
[5]   Effective and robust rocking centrifugal pendulum vibration absorbers [J].
Mayet, Johannes ;
Acar, Mustafa A. ;
Shaw, Steven W. .
JOURNAL OF SOUND AND VIBRATION, 2022, 527
[6]   Dynamic stability of centrifugal pendulum vibration absorbers allowing a rotational mobility [J].
Mahe, V. ;
Renault, A. ;
Grolet, A. ;
Thomas, O. ;
Mahe, H. .
JOURNAL OF SOUND AND VIBRATION, 2022, 517
[7]   On the dynamic stability and efficiency of centrifugal pendulum vibration absorbers with rotating pendulums [J].
Mahe, V. ;
Renault, A. ;
Grolet, A. ;
Mahe, H. ;
Thomas, O. .
JOURNAL OF SOUND AND VIBRATION, 2022, 536
[8]   Tuning of centrifugal pendulum vibration absorbers for translational and rotational vibration reduction [J].
Shi, Chengzhi ;
Parker, Robert G. ;
Shaw, Steven W. .
MECHANISM AND MACHINE THEORY, 2013, 66 :56-65
[9]   Critical features of centrifugal pendulum vibration absorbers dynamic modeling [J].
Mattia Cera ;
Luca D’Angelo ;
Marco Cirelli ;
Ettore Pennestrì ;
Pier Paolo Valentini .
Multibody System Dynamics, 2023, 57 :279-297
[10]   The effects of Coulomb friction on the performance of centrifugal pendulum vibration absorbers [J].
Vidmar, Brendan J. ;
Feeny, Brian F. ;
Shaw, Steven W. ;
Haddow, Alan G. ;
Geist, Bruce K. ;
Verhanovitz, Nathan J. .
NONLINEAR DYNAMICS, 2012, 69 (1-2) :589-600