On Spatially Homogeneous Solutions of a Modified Boltzmann Equation for Fermi–Dirac Particles

被引:2
|
作者
Xuguang Lu
机构
[1] Tsinghua University,Department of Mathematical Sciences
来源
Journal of Statistical Physics | 2001年 / 105卷
关键词
Boltzmann equation for Fermi–Dirac particles; moment production estimate; entropy; classification of equilibria; temperature inequality;
D O I
暂无
中图分类号
学科分类号
摘要
The paper considers a modified spatially homogeneous Boltzmann equation for Fermi–Dirac particles (BFD). We prove that for the BFD equation there are only two classes of equilibria: the first ones are Fermi–Dirac distributions, the second ones are characteristic functions of the Euclidean balls, and they can be simply classified in terms of temperatures: T>2/5TF and T=2/5TF, where TF denotes the Fermi temperature. In general we show that the L∞-bound 0≤f≤ 1/ε derived from the equation for solutions implies the temperature inequality T≥2/5TF, and if T>2/5TF, then f trend towards Fermi–Dirac distributions; if T=2/5TF, then f are the second equilibria. In order to study the long-time behavior, we also prove the conservation of energy and the entropy identity, and establish the moment production estimates for hard potentials.
引用
收藏
页码:353 / 388
页数:35
相关论文
共 20 条
  • [1] On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles
    Lu, XG
    JOURNAL OF STATISTICAL PHYSICS, 2001, 105 (1-2) : 353 - 388
  • [2] Measure Valued Solutions to the Spatially Homogeneous Boltzmann Equation Without Angular Cutoff
    Morimoto, Yoshinori
    Wang, Shuaikun
    Yang, Tong
    JOURNAL OF STATISTICAL PHYSICS, 2016, 165 (05) : 866 - 906
  • [3] The Spatially Homogeneous Boltzmann Equation for Bose–Einstein Particles: Rate of Strong Convergence to Equilibrium
    Shuzhe Cai
    Xuguang Lu
    Journal of Statistical Physics, 2019, 175 : 289 - 350
  • [4] The Spatially Homogeneous Boltzmann Equation for Bose-Einstein Particles: Rate of Strong Convergence to Equilibrium
    Cai, Shuzhe
    Lu, Xuguang
    JOURNAL OF STATISTICAL PHYSICS, 2019, 175 (02) : 289 - 350
  • [5] Quantitative relaxation towards equilibrium for solutions to the Boltzmann-Fermi-Dirac equation with cutoff hard potentials
    Borsoni, T.
    Lods, B.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (09)
  • [6] ASYMPTOTIC PROBABILITY OF ENERGY INCREASING SOLUTIONS TO THE HOMOGENEOUS BOLTZMANN EQUATION
    Basile, Giada
    Enedetto, Dariob
    Bertin, Lorenzo
    Caglioti, Emanuele
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (04): : 3995 - 4021
  • [7] Sharp Entropy Dissipation Bounds and Explicit Rate of Trend to Equilibrium for the Spatially Homogeneous Boltzmann Equation
    G. Toscani
    C. Villani
    Communications in Mathematical Physics, 1999, 203 : 667 - 706
  • [8] About the Use of Entropy Production for the Landau–Fermi–Dirac Equation
    R. Alonso
    V. Bagland
    L. Desvillettes
    B. Lods
    Journal of Statistical Physics, 2021, 183
  • [9] Exact Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics
    Niven, RK
    PHYSICS LETTERS A, 2005, 342 (04) : 286 - 293
  • [10] About the Use of Entropy Production for the Landau-Fermi-Dirac Equation
    Alonso, R.
    Bagland, V.
    Desvillettes, L.
    Lods, B.
    JOURNAL OF STATISTICAL PHYSICS, 2021, 183 (01)